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ABSTRACT 

Thin-walled steel tubular bridge piers (column refers to “bridge pier” in the subsequent text) with 

either circular and square box cross sections are becoming an increasingly attractive choice as 

cantilever bridge piers in severe earthquake regions due to their architectural, structural and 

constructional advantages. However, thin-walled steel tubular columns are vulnerable to local 

buckling, global buckling or interaction between both under extreme loading events such as strong 

earthquakes. This buckling results in a significant strength and ductility degradation, which 

eventually leads to an early and full collapse of the thin-walled steel tubular columns. The work 

presented in this dissertation investigates the inelastic structural behavior of uniform and newly 

proposed graded-thickness thin-walled steel tubular circular and square box columns under a 

constant axial force as a superstructure dead load and uni/ bidirectional cyclic lateral loading. First 

of all, the adopted finite element model (FEM) in ABAQUS/Standard version 6.14, which takes 

into account the effect of both material and geometric nonlinearities, is verified with the 

experimental results reported in the literature and employed for the analysis. Second, the newly 

proposed graded-thickness column, with size and volume of material equivalent to the BB column, 

is evaluated under a constant axial force and uni/bidirectional cyclic lateral loading. The proposed 

graded-thickness column is proved to have significant improvements in the overall hysteretic 

behavior compared to its counterpart conventional uniform column. Then, the deterioration of the 

circular bidirectional cyclic loading path over the unidirectional path is emphasized. Finally, a 

comprehensive parametric study is carried out to investigate the effect of key design parameters 

including: radius-to-thickness ratio parameter (Rt), width-to-thickness ratio parameter (Rf), column 

slenderness ratio parameter (λ), magnitude of axial load (P/Py), and number of loading cycles (N) 

on the overall hysteretic behavior of uniform and graded-thickness columns under a constant axial 
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force and uni/bidirectional cyclic lateral loading. Subsequently, design formulae have been derived 

to predict the ultimate strength and ductility of both uniform and proposed graded-thickness 

columns. 
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CHAPTER 1 Introduction 

1.1 Thin-Walled Steel Tubular Columns 

Thin-walled steel tubular bridge piers (“bridge pier” is called column in the subsequent text) either 

with circular or stiffened square box sections are employed in a variety of structural applications 

for their favorable architectural, structural and constructional advantages in urban earthquake-

prone regions (Al-Kaseasbeh and Mamaghani, 2018, 2019; Bedair, 2015; Guo et al., 2013a; Tao 

et al., 2005; Ucak and Tsopelas, 2014). In severe seismic regions, the integrity of civil engineering 

structures is exposed to increased earthquake risk (Jaiswal et al., 2017; Mahin, 1998; Miller, 1998; 

Nakashima et al., 1998). In response to these risks, thin-walled steel columns with either circular 

or stiffened square box sections are becoming an attractive choice in modern buildings, elevated 

storage tanks, transmission towers, onshore, and offshore structures (Bedair, 2015; Tao et al., 

2005; Ucak and Tsopelas, 2014). In addition, these columns are commonly used for elevated 

highway bridge piers (Goto et al., 2012), as shown in Fig. 1.1, and wind turbines (Guo et al., 

2013b) in severe earthquake regions due to their structural efficiency, attractive aesthetic 

appearance, high earthquake resistance, and potential for concrete infilling (Yang et al., 2017a; 

Zhao et al., 2015). Compared to their counterparts of reinforced concrete, thin-walled steel tubular 

columns are more efficient due to their light weight, high strength, ductility, and ease and speed 

of construction, especially, when limited construction space is needed (Mamaghani, 1996; Yang 

et al., 2017b). However, thin-walled steel columns are vulnerable to local buckling, global 

buckling, or interaction between both under extreme loading events such as strong earthquakes 

(e.g., the Kobe earthquake (1995), the Sichuan earthquake (2008), and the East Japan earthquake 

(2011)) (Al-Kaseasbeh and Mamaghani, 2018, 2019; Aoki and Susantha, 2005a; Ge et al., 2000a; 
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Mamaghani et al., 1996a, 1997). Local buckling leads to a significant strength and ductility 

degradation, and early full collapse of these columns due to uni/multidirectional cyclic lateral 

loading (Al-Kaseasbeh and Mamaghani, 2018, 2019; Aoki and Susantha, 2005a; Bedair, 2015; 

Bruneau, 1998; Gao et al., 1998b; Ge et al., 2000a; Li et al., 2017; Mamaghani et al., 1996b, 1997, 

1995, 1996a; Shen et al., 1995; Ucak and Tsopelas, 2014; Usami et al., 1995; Yang et al., 2017a). 

The excessive permanent lateral deformation and collapse of steel bridge piers due to inelastic 

behavior and severe local buckling was reported (Bruneau, 1998; Usami et al., 1995), as shown 

Fig. 1.2. According to these observations, the hysteretic behavior of thin-walled steel tubular 

circular and square box columns with uniform plate thickness have been extensively investigated 

in the past few decades. Many experimental and numerical analyses have been conducted to 

identify the factors that might improve the strength and ductile behavior of the thin-walled steel 

columns under constant axial force and cyclic lateral loading (Fukumoto et al., 2003; Ge et al., 

2000b; Liu and Young, 2003; Mustafa et al., 2016; Usami et al., 2000b; Usami and Ge, 1998). 

Local buckling, global buckling, or the interaction between both are governing factors in the 

strength and ductility evaluation of thin-walled steel columns (AISC, 2010). Local buckling in 

thin-walled steel tubular columns may cause premature collapse and reduce the overall strength 

and  ductility of thin-walled steel tubular columns (Mustafa et al., 2016). It has been confirmed 

that the radius-to-thickness ratio parameter (Rt), width-to-thickness ratio parameter (Rf), and 

slenderness ratio parameter (λ) are the main structural parameters affecting the strength and 

ductility of thin-walled steel columns. Moreover, the strength and ductility of these columns are 

improved by decreasing Rt, Rf and λ (Al-Kaseasbeh and Mamaghani, 2018, 2019; Gao et al., 1998a; 

Kwon et al., 2007; Mamaghani and Packer, 2002).  In general, local buckling of the thin-walled 
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steel tubular columns is affected by the Rt or Rf parameter, while global buckling is controlled by 

the λ parameter (Goto et al., 1998; Mamaghani, 2008; Mamaghani and Packer, 2002). 

 

  

  
Fig. 1.1. In-service Steel Bridge Piers (Courtesy of Google).  
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(a) Local Buckling (b) Full Collapse. 

Fig. 1.2. Steel Bridge Piers (Kulkarni, 2012). 

 

In the reality, the earthquake ground motion is complex and 3D loading components acting 

simultaneously, as opposed to assumed unidirectional cyclic lateral loading pattern (Anderson and 

Mahin, 2004; Dang et al., 2017; Okazaki et al., 2003; Watanabe et al., 2011). Moreover, hysteretic 

behavior of thin-walled steel tubular columns under multidirectional cyclic lateral loading is 

expected to be more critical and severe than the same amplitude of unidirectional cyclic loading. 

Since then, the hysteretic behavior of thin-walled steel tubular columns under bidirectional cyclic 

lateral loading was investigated by a number of researchers (Aoki et al., 2007; Dang and Aoki, 

2013a; Goto, Yoshiaki et al., 2009; Watanabe et al., 2011). The studies revealed that thin-walled 

steel tubular columns under bidirectional cyclic lateral loading surfer an extensive degradation in 

strength and ductility compared to unidirectional cyclic lateral loading, and should be incorporated 

in the seismic design practice (Dang and Aoki, 2013a; Goto et al., 2006; Onishi et al., 2005; Oyawa 

et al., 2004; Watanabe et al., 2011). Thin-walled steel bridge piers are key structural components 
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in bridge seismic design (Jiang et al., 2002). Along with the Rf and λ; cross-sectional configuration, 

cyclic lateral loading pattern, and different factors must be practically considered in the seismic 

design of the thin-walled steel tubular columns (Goto et al., 2006). Recent developments in the 

manufacturing technology of high strength steel make thin-walled steel tubular columns are 

affordable and extremely attractive in civil engineering applications (Tao et al., 2005). Over the 

past few decades, several studies concluded that all retrofit schemes including longitudinal 

stiffeners, diaphragms, corner reinforcement, inner cruciform plates, corner plates, and concrete 

infill have improved the strength and ductility of the thin-walled steel tubular columns 

(Mamaghani, 2004, 2005; Susantha et al., 2005). Furthermore, setting the diaphragm along the 

longitudinal axis of the column delays the local buckling occurrence (Ge et al., 2000a).  New thin-

walled corrugated and cellular steel columns have been introduced by Ucak and Tsopelas (2006) 

(Ucak and Tsopelas, 2006). It was found that these new types of sections demonstrate superior 

performance in both strength and ductility properties, and post-buckling. Columns with tapered 

plates have been introduced to improve the ultimate strength and ductility of steel bridge piers as 

effective and economical techniques to improve the ductility (Susantha et al., 2005; Takaku et al., 

2004). 

1.2 Research Objectives  

Up to date, researchers investigated thin-walled steel tubular columns either with circular or square 

box sections with uniform thickness under uni/multidirectional cyclic lateral loading. All these 

studies addressed that thin-walled steel columns suffer local buckling near the base in a range that 

is equal to the diameter or side width of the circular and square box columns, respectively (Al-

Kaseasbeh and Mamaghani, 2018, 2019; Nishikawa et al., 1998a; Tang et al., 2016a; Usami, 1996; 

Wang et al., 2016). In order to overcome this deficiency and ensure an adequate strength and 
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ductile behavior of thin-walled steel columns, a graded-thickness thin-walled steel tubular column 

,with size and volume of material equivalent to a uniform thin-walled steel tubular column, has 

been proposed and investigated by the authors under constant axial force and uni/bidirectional 

cyclic lateral loading (Al-Kaseasbeh and Mamaghani, 2018, 2019). In evaluating the proposed 

graded-thickness column, its strength and ductility improvement under uni/bidirectional cyclic 

lateral loading is obvious as the proposed graded-thickness column inhibit the local buckling near 

the base of the column. Moreover, the proposed graded-thickness column delays the local buckling 

occurrence and absorbs more energy under severe earthquakes. To the best of the authors’ 

knowledge, no literature (except the publications out of this study) has been reported on thin-

walled steel tubular columns with graded thickness. Therefore, investigation is needed to 

understand the behavior of such structures along with the development of the manufacturing of 

steel structures.  

This study aims to establish the utility of newly proposed graded-thickness thin-walled steel 

tubular column in an attempt to improve the overall hysteretic behavior of conventional uniform 

thin-walled steel tubular columns. The newly proposed graded-thickness column is evaluated in 

regard to its strength, ductility, energy absorption, and post-buckling under constant axial force 

and uni/bidirectional cyclic lateral loading. In order to achieve this goal, four tested thin-walled 

steel tubular circular and square box columns with uniform thickness, reported literature (Aoki et 

al., 2007; Dang et al., 2017; Goto et al., 2006; Nishikawa et al., 1998a), were numerically analyzed 

under constant axial force and uni/bidirectional cyclic lateral loading to validate the accuracy of 

the adopted Finite element Model (FEM) in ABAQUS/Standard version 6.14 (Hibbit et al., 2014a). 

Then, the newly proposed graded-thickness columns with size and volume of material equivalent 
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to the uniform columns is introduced and investigated under constant axial force from the 

superstructure and uni/bidirectional cyclic lateral loading.  

The study results indicate the proposed graded-thickness columns are advantageous in achieving 

significant improvements in the ultimate strength, ductility, energy absorption, and post-buckling 

compared to their counterpart BB columns, emphasizing the effect of the plate thickness and 

sectional configuration in the proposed graded-thickness columns. The achieved improvements in 

the overall behavior of the proposed columns is due to their ability to inhibit and/or eliminate the 

local buckling near the base of the column, where the local buckling usually occurs. Furthermore, 

a comparison study concluded that the hysteretic behavior of thin-walled steel tubular columns is 

more severe and critical under bidirectional cyclic lateral loading compared to unidirectional cyclic 

lateral loading. As a part of this research work, a comprehensive parametric study is carried out to 

provide insight into the effects of key design parameters including: radius-to-thickness ratio 

parameter (Rt), the width-to-thickness ratio parameter (Rf), the column slenderness ratio parameter 

(λ), the magnitude of the axial load (P/Py), and the number of loading cycles (N) on overall 

hysteretic behavior of thin-walled steel tubular columns under uni/bidirectional cyclic lateral 

loading.  Finally, a series of design formulae is given to predict the strength and ductility of the 

uniform and graded-thickness thin-walled steel tubular columns. The proposed formulae are 

expected to be useful guidelines in the practical design and steel fabrication.  

1.3 Overview of Study Content 

As shown in Fig. 1.3, this dissertation consists of six chapters. The present chapter gives a general 

introduction about thin-walled steel tubular columns and the need of the proposed graded-

thickness columns. Chapter 2 and Chapter 3 deal, respectively, with the hysteretic behavior of thin-
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walled steel tubular circular and square box columns with uniform and graded-thickness under a 

constant axial force and unidirectional cyclic later loading. 

In Chapter 4, the hysteretic behavior of thin-walled steel tubular circular columns with uniform 

and graded-thickness under circular bidirectional cyclic later loading is investigated in detail. The 

effect of cyclic loading pattern on the overall hysteretic behavior is evaluated compared to 

unidirectional cyclic lateral loading (see Chapter 2). Hysteretic behavior of thin-walled steel square 

box columns with uniform and graded-thickness under circular bidirectional cyclic lateral loading 

is carried out in Chapter 5. The bidirectional loading effect is also compared to unidirectional 

loading pattern (see Chapter 3). Finally, the conclusions and future work are summarized in 

Chapter 6.  
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Fig. 1.3. Organization of the Chapters. 

Chapter 2 

Circular Columns under Unidirectional Cyclic 

Lateral Loading 

Chapter 3 

Stiffened Square Box Columns under 

Unidirectional Cyclic Lateral Loading 

Chapter 4 

Circular Columns under Bidirectional Cyclic 

Lateral Loading 

Chapter 5 

Stiffened Square Box Columns under 

Bidirectional Cyclic Lateral Loading 

Chapter 6 

Summary and Future Work 
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CHAPTER 2 Circular Columns under Unidirectional Cyclic Lateral Loading 

2.1 Introduction 

This chapter aims to establish the utility of newly proposed graded-thickness circular sections (GC) 

in improving the ultimate strength, ductility, and post-buckling of conventional uniform thin-

walled steel tubular columns (C). To achieve this goal, a uniform circular column (C1) tested by 

Nishikawa et al., 1998 (Nishikawa et al., 1998b) has been numerically analyzed under constant 

axial force and unidirectional cyclic lateral loading. The accuracy of the adopted FEM has been 

verified through the comparison between the FE analysis and the experimental results. Then, a 

graded-thickness circular column (GC) with size and volume of material equivalent to a uniform 

circular column (C) is introduced. This study proves that the proposed GC column shows 

significant improvements in strength, ductility, and post-buckling compared to its counterpart C 

column. The main reason for the improved behavior of GC columns is their ability to eliminate 

buckling near the base of the column (section A-A, see Fig. 2.1 and Fig. 2.2) where the buckling 

most likely occurs. In the section 2.6, a parametric study is carried out to investigate effects of the 

radius-to-thickness ratio parameter (Rt), the column slenderness ratio parameter (λ), the magnitude 

of the axial load (P/Py), and the number of loading cycles (N) on the strength and ductility of both 

C and GC columns. Finally, design formulae are provided to predict the strength and ductility of 

C and GC columns. The proposed formulae are expected to be useful in the practical design of 

such columns.  

2.2 Numerical Model 

A series of FE analyses on the hysteretic behavior of thin-walled steel tubular circular columns are 

carried out using the commercially available finite-element software Abaqus/Standard version 
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6.14 (Hibbit et al., 2014a). The FEM takes into consideration both material and geometric non-

linearities. The linear kinematic hardening model, von Mises yield surface, and associated plastic 

flow rule for material nonlinearity available in Abaqus were adopted in the analysis. This model 

is used to simulate the inelastic behavior of materials that are subjected to cyclic loading (Hibbit 

et al., 2014a). The accuracy of the employed FEM is validated in comparison with the experimental 

data available in the literature (Nishikawa et al., 1998b). The most important parameters 

considered in the design of thin-walled steel tubular circular columns are the radius-to-thickness 

ratio parameter (Rt) and the column slenderness ratio parameter (λ) (Mamaghani and Packer, 

2002). Rt is concerned with the local buckling of thin-walled columns, while λ controls  global 

stability (Mamaghani, 2008; Mamaghani and Packer, 2002). For the tested column (C1), these 

parameters are defined as follows (Chen, W. F. and Duan, 2014; Mamaghani, 1996): 
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Where h = column height = 3403 mm; r = radius of gyration of cross section = 315 mm; σy = yield 

stress= 289.6 MPa; E = Young’s modulus = 206 GPa; v = Poisson’s ratio = 0.3; D = Diameter of 

circular cross-section = 900 mm; and t = plate thickness = 9 mm. The previously defined 

parameters are reported in the literature (Nishikawa et al., 1998b). Under the test, the column is 

subjected to a constant axial force (P) and unidirectional cyclic lateral displacement at the top of 

the column. In thin-walled steel tubular circular columns, excessive deformation tends to develop 

in a local part and consequently the redistribution of stress becomes unexpected. The test results 

indicate that local buckling occurs near the column base in a range that is equal to the diameter of 

the cross section (D) (Nishikawa et al., 1998a; Usami, 1996). For this purpose, as shown in Fig. 
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2.1, the two-node beam element (B31) is employed for the upper part of the column, whereas 

reduced integration four-node conventional shell elements (S4R), which accurately consider the 

localized deformation, are used for the lower part of the column. All used elements are available 

in the Abaqus/standard library (Hibbit et al., 2014a). The interface between the shell (S4R) and 

beam (B31) elements is modeled using multi-point constraint (MPC). The analyzed cantilever 

column is fixed at the base and subjected to a constant axial force (P) and unidirectional cyclic 

lateral displacement at its top. To reduce the computational time, the bottom half of the lower part 

(equal to the cross-section diameter, D) is divided into 26 shell elements, while the remaining 

height (D) is only divided into 14 shell elements along the column axis. Forty elements for both 

segments are used in the circumferential direction. The upper part of the column (height of h-2D) 

is divided into beam elements with the size of 90. The above stated mesh sizes are determined by 

trial-and-error. It is found that such mesh density gives accurate results. The default value of five 

integration points over the thickness is used. The displacement convergence criterion is selected 

in the analysis and the convergence tolerance is taken as 10-5. More details of elastoplastic large 

displacement analyses are reported in (Mamaghani et al., 1995; Shen et al., 1995). The initial 

geometrical imperfection and residual stresses are not considered in the current analysis as they 

were not quantified in the tested columns (Goto et al., 1998; Nishikawa et al., 1996, 1998b). 

Moreover, both of them have insignificant influence on the overall cyclic behavior after the first 

half-cycle (Banno et al., 1998; Mamaghani et al., 1996b, 1996a). Table 2.1 shows the geometrical 

properties of the analyzed C and GC columns. It is assumed that all the analyzed columns are made 

of the same carbon steel SS400 (JIS, 2012) (equivalent to ASTM A36 (ASTM, 2014)) as the tested 

column (C1). 
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Fig. 2.1. C Column Model: (a) Column; (b) FE Meshing; (c) Cross Section; and (d) Loading Program. 

2.2.1 Unidirectional Cyclic Loading Program 

The schematic presentation of the displacement-controlled unidirectional cyclic loading is 

illustrated in Fig. 2.1d, adopted as a lateral loading program. The solid line denotes one-cycle 

loading (N = 1), while the dashed line stands for three-cycle loading (N = 3). Throughout the 

loading history, the unidirectional cyclic loading is quasi-statically applied to the top of the column 

with a constant axial force (P). The amplitude of the cyclic displacement is increased step by step 

as a multiple of the yield displacement (δy) which is defined by Eq. (2.3):  

3

3

y

y

H h

EI
 =

 

 
(2.3) 

Where Hy = (σy – P/A) Z/h = lateral yield load and A, h, EI, and Z = cross-sectional area, the height, 

the bending stiffness, and the section modulus, respectively, of the column (Goto, Y et al., 2010). 
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The values of the yield displacement and lateral yield load for all analyzed columns are listed in 

Table 2.2. 

Table 2.1. Material and Geometrical Properties of Analyzed C and GC columns. 

C Columns 

 

GC Columns 

Column h(mm) t(mm) Rt λ P/Py Column h(mm) 
t (mm) 

Rt λ P/Py 
t1 t2 t3 

C1 -tested 3403 9.00 0.116 0.26 0.124 GC1 3403 11.25 9.00 7.75 0.116 0.26 0.124 

C2 3403 10.45 0.100 0.26 0.124 GC2 3403 13.00 10.45 9.00 0.100 0.26 0.124 

C3 3403 13.00 0.080 0.26 0.124 GC3 3403 16.25 13.00 11.20 0.080 0.26 0.124 

C10 3403 17.40 0.060 0.26 0.124 GC10 3403 21.75 17.40 15.00 0.060 0.26 0.124 

C11 3403 26.00 0.040 0.26 0.124 GC11 3403 32.65 26.00 22.50 0.040 0.26 0.124 

C4 3960 9.00 0.116 0.30 0.124 GC4 3960 11.25 9.00 8.00 0.116 0.30 0.124 

C5 3960 10.45 0.100 0.30 0.124 GC5 3960 13.00 10.45 9.36 0.100 0.30 0.124 

C6 3960 13.00 0.080 0.30 0.124 GC6 3960 16.25 13.00 11.65 0.080 0.30 0.124 

C6-10 3960 13.00 0.080 0.30 0.100 GC6-10 3960 16.25 13.00 11.65 0.080 0.30 0.100 

C6-15 3960 13.00 0.080 0.30 0.150 GC6-15 3960 16.25 13.00 11.65 0.080 0.30 0.150 

C6-20 3960 13.00 0.080 0.30 0.200 GC6-20 3960 16.25 13.00 11.65 0.080 0.30 0.200 

C6-30 3960 13.00 0.080 0.30 0.300 GC6-30 3960 16.25 13.00 11.65 0.080 0.30 0.300 

C12 3960 17.40 0.060 0.30 0.124 GC12 3960 21.75 17.40 15.60 0.060 0.30 0.124 

C13 3960 26.00 0.040 0.30 0.124 GC13 3960 32.65 26.00 23.40 0.040 0.30 0.124 

C7 6600 9.00 0.116 0.50 0.124 GC7 6600 11.25 9.00 8.60 0.116 0.50 0.124 

C8 6600 10.45 0.100 0.50 0.124 GC8 6600 13.00 10.45 9.96 0.100 0.50 0.124 

C9 6600 13.00 0.080 0.50 0.124 GC9 6600 16.25 13.00 12.40 0.080 0.50 0.124 

C14 6600 17.40 0.060 0.50 0.124 GC14 6600 21.75 17.40 16.60 0.060 0.50 0.124 

C15 6600 26.00 0.040 0.50 0.124 GC15 6600 32.65 26.00 24.90 0.040 0.50 0.124 

For all columns: Diameter (D) = 900 mm, σy = 289.6 MPa, E = 206 GPa, and, ν = 0.3. 

All columns are loaded with one-cycle at each displacement (N = 1), except C1 and GC1 loaded with N = 1 and 3. 

Py = σy*A, A=π/4*(D2 – Di
2), Di = D-2t, t = thickness for the C column. 

2.3 Proposed Thin-Walled Steel Tubular Column with Graded Thickness 

C columns are experiencing premature buckling (i.e., local buckling, global buckling, or the 

interaction between both), near the base of the column, under combined axial force and cyclic 

lateral loading (Usami, 1996). This buckling makes these members unable to fully utilize their 

strength and ductility capacities. To overcome these shortcomings, thin-walled steel tubular 

columns with graded thickness (called “graded-thickness” column and denoted as GC) are used as 
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alternatives to the conventional thin-walled steel circular columns (C). The column height and 

diameter are kept the same for both C and GC columns. The GC column is divided into three 

segments of constant cross sections along its longitudinal axis. The first and second segments have 

the same height that is equal to the diameter (D) of the circular section from the base. The third 

segment has a height of (h-2D). As shown in Fig. 2.2, a thicker cross section (t1=1.25t) is used 

along the first segment, and the original thickness (t2= t; thickness of the C column) is kept for the 

second segment. Finally, the remaining material volume is distributed on the third segment with 

t3. The above configurations of the GC column are chosen based on which achieve better behavior. 

Table 2.1 shows the material and geometrical properties of the C and GC columns. As can be seen, 

the geometrical properties (except the plate thickness) are the same for both types of columns.  

2.4 Results and Discussion 

The computed results were obtained using the commercially available finite-element software 

Abaqus/Standard version 6.14 (Hibbit et al., 2014a). Moreover, the accuracy of the employed FEM 

has been validated in comparison with the experimental results of the cyclic loading test from the 

literature (Nishikawa et al., 1998b). 

2.4.1 Comparison of Numerical and Experimental Results 

The normalized lateral load vs. lateral displacement curves of the FE analyses, determined from 

the one-cycle lateral loading (N = 1), (see Fig. 2.1d), are shown in Fig. 2.3. In these figures, Hy 

and δy denote the lateral yield load and yield displacement, respectively. Initially, the hysteresis 

loops from FE analyses are compared to the experimental results available in the literature  
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Fig. 2.2. GC Column Model: (a) Column, and (b) Graded-thickness Sections. 

 

(Nishikawa et al., 1998b). As seen from Fig. 2.3, the comparison of lateral load vs. lateral 

displacement curves of the C1 column shows a relatively good agreement with the experimental 

results. The predicted ultimate strength of the C1 column (i.e., Hmax/Hy = 1.403) obtained from the 

analysis differs only by 3% from the experimental results (i.e., Hmax/Hy = 1.445). This indicates 

that FE analysis, using the kinematic hardening material model, describes with a reasonable 

accuracy the structural behavior with considering the local buckling of thin-walled steel tubular 

columns with circular sections. However, the columns’ stiffness with reversal loading at large 
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lateral displacements is slightly overestimated.  The reason is that the kinematic hardening model 

does not accurately consider the Bauschinger effect (Goto et al., 1998; Mamaghani et al., 1995; 

Shen et al., 1995). Similar findings have been reported in other studies (Goto et al., 1998; Ucak 

and Tsopelas, 2006).  

2.4.1.1 Buckling Mode of C1 Column 

As shown in Fig. 2.4, the deformed shape of the C1 column (Fig. 2.4b) at the end of the FE analysis 

was compared to the deformed shape at the end of the experiment (Fig. 2.4a) (Goto et al., 1998). 

Similar to the experimental observations, the column bulged outward near the base and formed an 

elephant foot bulge buckling mode. The deformed shape was captured relatively well in the 

analysis. 

 

 

Fig. 2.3. Hysteretic Behavior of Analysis and Experiment of the C1 column. 
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(a) Experiment (Goto et al., 1998) (b) C1 Column (c) GC1 Column 

Fig. 2.4. Buckling Deformation of Columns. 

 

2.5 Hysteresis Behavior of C and GC Columns 

Based on the results in Fig. 2.3, the comparison between the numerical and experimental results 

indicates that the FEM can predict the structural non-linear behavior with reasonable accuracy. 

The results obtained from the FE analysis differ only by 3% from the test results. Using the same 

validated FEM, a comparison study has been performed between the hysteretic behavior of the C 

and GC columns under the same axial force and unidirectional cyclic lateral loading, as shown in 

Fig. 2.5. A significant increase in both ultimate strength and ductility was observed when the GC 

columns were used with the same size and volume of the materials as in the counterpart C columns. 

Moreover, the post-buckling of the GC columns was improved as compared to their C column 

counterparts. For example, in the C1 column (see Fig. 2.5a), the buckling initiates when the 

displacement is between 2δy and 3δy. A strength drop of 17.6% of the ultimate strength (observed 

at δ = +2.16δy) occurs at δ = +4δy. As the displacement increases, the column strength decreases 
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in a rapid pattern to 38% of its ultimate strength at δ = +8δy. On the other hand, the GC1 column 

shows a maximum load capacity at δ = +3δy. Only an 8.4% strength drop of the ultimate strength 

took place at δ = +4δy, which gives an indication that the local buckling started between 3δy and 

4δy. As the displacement amplitude was increased, more strength deterioration was observed. The 

residual strength of the GC1 column was 51.6% of its ultimate strength at δ = +8δy. It is worth 

mentioning that the strength significantly dropped at δ = -4δy, and δ = -8δy for both columns. A 

similar trend was observed for all the analyzed columns, as shown in  Fig. 2.5b, c, and d. Fig. 2.4 

shows the final deformed shape of the GC column compared to the C column at δ = +8δy. The GC 

columns show a delay in the buckling occurrence. Moreover, the buckled shape of the C columns 

occurred near the base of the column as expected, while buckling shifted upward from the base in 

the case of the GC columns, as shown in Fig. 2.4c. 

2.6 Parametric Study 

The validated FEM was then employed to carry out an extensive parametric study to find out the 

effects of different parameters on the overall hysteretic behavior of the C and GC columns. A total 

of 40 columns including one tested column (C1 column) are analyzed using the commercially 

available finite-element software Abaqus/standard version 6.14 (Hibbit et al., 2014a). The studied 

parameters that are commonly used in the design and that affect the overall behavior of the thin-

walled steel tubular columns are: the radius-to-thickness ratio parameter (Rt) with a range of (0.04 

– 0.116), the column slenderness ratio parameter (λ) varying from 0.26 to 0.5, the axial load ratio 

(P/Py), where five different ratios (0.1Py, 0.124Py, 0.15Py, 0.20Py, and, 0.3Py) are applied on C6 

and GC6 columns, and the number of loading cycles at each displacement amplitude (N). To 

examine the effect of loading cycle numbers (N), all the columns are analyzed under one-cycle of  
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Fig. 2.5. Comparison of Hysteretic Behavior: (a) C1 & GC1, (b) C4 & GC4, (c) C5 & GC5, and (d) C6 & GC6. 

 

displacement (N = 1), except the C1 and GC1 columns, which have been analyzed under one (N 

= 1), and three (N = 3) displacement cycles. The ranges of the studied parameters are selected as 

they are commonly adopted by the researchers (Usami et al., 2000b, 2000a). Also, in the practical 

design, 0.03 ≤ Rt ≤ 0.08 and 0.2 ≤ λ ≤ 0.4 are generally used for bridge piers with circular cross 

sections under P/Py ≤ 0.2 (Chen, W. F. and Duan, 2014). The columns listed in Table 2.1 are 

assumed to be made of carbon steel SS400 (JIS, 2012) (equivalent to ASTM A36 (ASTM, 2014)). 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

C1

GC1

(a)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

C4

GC4

(b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

C5

GC5

(c)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10
H

/H
y

δ/δy

C6

GC6

(d)



www.manaraa.com

 

44 

 

2.6.1 Effect of Radius-to-Thickness Ratio Parameter (Rt) 

The effect of the radius-to-thickness ratio parameter (Rt) on the strength and ductility of the column 

is studied. The increase in Rt might be either due to an increase in the radius of the column or a 

decrease in the thickness.  I n this study, all columns are analyzed by keeping the diameter constant 

and changing the thickness. Fig. 2.6 shows the lateral load vs. lateral displacement envelope curves 

of both the C and GC columns. With the decrease of Rt, higher ultimate strength and ductility in 

both C and GC columns is obtained.  For example, as Rt  in the C columns decreases from 0.116 

(C1 column) to 0.04 (C11 column) with λ = 0.26 (see Fig. 2.6a), the normalized ultimate strength 

is increased by 10%. In addition, the normalized maximum displacement corresponding to the 

ultimate strength is increased by 132% (i.e., δm/δy shifted from (2.16 to 5). Similarly, decreasing 

Rt in the GC columns from 0.116 (in GC1column) to 0.04 (GC11 column) with λ = 0.26 (see Fig. 

2.6c), improves the ultimate strength by 9%. Also, the normalized maximum displacement 

corresponding to the ultimate strength is increased by 85% (i.e. δm/δy shifted from 2.71 to 5). 

Furthermore, columns with smaller Rt experience higher ductility than those with larger Rt. By 

looking at Fig. 2.6, it should be noted that the improvement of the ultimate strength becomes less 

when λ gets larger (see Fig. 2.6b and d), as discussed in the following section. 

2.6.2 Effect of Slenderness Ratio Parameter (λ) 

The effect of the slenderness ratio parameter (λ) on the strength and ductility of the column is 

examined, as presented in Fig. 2.7. Ultimate strength and ductility are improved as λ values get 

smaller in both C and GC Columns. 
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Fig. 2.6. Effect of Rt parameter: (a) C columns with λ = 0.26, (b) C columns with λ = 0.5, (c) GC columns with λ = 

0.26, and (d) GC columns with λ = 0.5. 
 

As an example, the normalized ultimate strength and the normalized maximum displacement 

corresponding to the ultimate strength are improved by 7.25% and 103%, respectively, when λ 

decreases from 0.5 in the case of the C15 column to 0.26 in the C11 column (see Table 2.2). ). A 

similar trend is observed in the case of GC columns, where the normalized ultimate strength and 

the normalized maximum displacement are increased by 21% and 72%, respectively. 
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Fig. 2.7. Effect of λ parameter: (a) C columns with Rt = 0.116, (b) C columns with Rt = 0.08, (c) GC columns with Rt 

= 0.116, and (d) GC columns with Rt = 0.08. 

 

Moreover, when λ is higher, the area surrounded by the envelope curve decreases and the slope 

becomes steeper after the ultimate strength point, especially, in the case of λ = 0.5. In other words, 

the strength after the peak point drops in a rapid pattern in average of 42% and 32% for C7 and 

GC7 columns, respectively, in case of λ = 0.5. In contrast, in the case of λ = 0.26, where less 

strength drops, the drop is 20% and 14% for C1 and GC1 columns, respectively. The reason is 

attributed to the P-Δ effect in the case of the long columns (Gao et al., 1998a).  
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2.6.3 Effect of Axial Load (P/Py) 

The effect of the axial load ratio on the ultimate strength and ductility of the C and GC columns is 

investigated. Five of C columns (C6-10, C6-12.4, C6-15, C6-20, and C6-30) and five of the GC 

columns (GC6-10, GC6-12.4, GC6-15, GC6-20, and GC6-30) are analyzed under different axial 

loads, where the number after the hyphen indicates the applied axial load ratio (i.e., P/Py = 0.1, 

0.124, 0.15, 0.2, and 0.3, respectively). The envelope curves of the normalized lateral load (H/Hy0) 

vs. lateral displacement (δ/δy0) are shown in Fig. 2.8. Hy0 and δy0 represents the lateral yield load 

and yield displacement under zero axial load, respectively. For both C6 and GC6 columns with 

higher axial load, the maximum strength is reduced. For instance, the maximum strength is 

decreased by 15% and 23% in C6 and GC6 columns, respectively, when P/Py increases from 0.1 

to 0.3. Furthermore, the post-buckling curve slope becomes steeper, which dissipate less energy 

as observed in the cases of C6-30 and GC6-30 columns. When P/Py = 0.3, the slope of C6-30 and 

GC6-30 columns decreases by 53% and 70%, respectively, in each loading step, while the slope 

decreases by 9.7% and 7.4% in the cases of C6-10 and GC6-10 columns, respectively. The main 

reason is believed to be due to the P-Δ effect in the case of large axial loads as found in (Gao et 

al., 1998a). 

2.6.4 Effect of Number of Loading Cycles (N) 

Fig. 2.9 shows the comparison of the envelope curves of the C (Fig. 2.9a) and GC (Fig. 2.9b) 

columns in the cases of one (N = 1) and three (N = 3) loading cycles at each lateral displacement 

level. It is noted that when the displacement is greater than 3δy, the strength decreases in a rapid 

pattern in the case of N = 3 compared to the case of N = 1 for both C and GC columns. Furthermore, 

the slope of the post-buckling curve in the case of N = 3 is steeper than that for N = 1 when the 
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(a) C6 Column                                                              (b) GC6 Column 

Fig. 2.8. Envelope Curves with Different Axial Load. 

 

lateral displacement is greater than 3δy. For example, C1 and GC1 columns slopes decrease by 

21% and 15% in the case of N = 1, respectively. In comparison, C1 and GC1 columns slopes 

decrease by 26% and 18.5% in the case of N = 3, respectively. On the other hand, no remarkable 

effect is observed when the lateral displacement is less than 3δy, which might be due to small 

plastic deformation.  

2.7 Strength and Ductility Evaluation of C and GC Columns 

Table 2.2 summarizes the computed ultimate strength values from the lateral load vs. lateral 

displacement responses of the analyzed columns. For both C and GC columns, the Hmax/Hy vs. 

(1+P/Py) Rt λ relationship is plotted taking into account the axial load (P/Py) effect as shown in 

Fig. 2.10. The proposed formulae that fit the computed ultimate strength of the analyzed C and 

GC columns are as follows: 
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Based on Fig. 2.10, the ultimate strength is improved if Rt decreases under constant λ. Similarly, 

the ultimate strength increases if λ decreases with constant Rt. The failure of thin-walled steel 

tubular columns is considered to have occurred when the displacement equals either δm or δ0.9. δm 

is the displacement corresponding to the ultimate strength, where δ0.9 is defined as the displacement 

point where the strength drops to 90% of its ultimate value after the peak (Mamaghani, 1996; 

Mamaghani et al., 2015; Usami, 1996). The δm/δy and δ0.9/δy are key parameters used to evaluate 

the ductility performance for both C and GC columns. However, the δ0.9/δy parameter considers 

the cyclic characteristics and fully utilizes the strength of the steel at large plastic displacements. 

Moreover, the strength of thin-walled steel tubular circular columns decreases significantly after 

the peak value due to the influence of local buckling. Therefore, it is more reasonable to use the 

δ0.9/δy parameter to evaluate the ductility (Gao et al., 1998a; Mamaghani et al., 2015; Usami et al., 

2000b). 

              
(a) C1 Column                                                             (b) GC1 Column 

Fig. 2.9. Effect of N on Ductility Capacity. 
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Table 2.2. Strength and Ductility Evaluation of C and GC Columns.  

C Columns 

 

GC Columns 

Column Hy (KN) δy (mm) Hmax/Hy δm/δy δ0.9/δy Column Hy (KN) δy (mm) Hmax/Hy δm/δy δ0.9/δy 

C1 -tested 414.2 10.6 1.403 2.16 3.45 GC1 414.2 10.6 1.675 2.71 4.10 

C2 478.7 10.6 1.409 2.40 3.90 GC2 478.7 10.6 1.728 3.00 4.97 

C3 593.2 10.6 1.448 2.82 4.68 GC3 593.2 10.6 1.746 2.83 5.3 

C10 779.5 10.6 1.495 3.00 6.34 GC10 779.5 10.6 1.799 3.82 6.68 

C11 1135.5 10.6 1.54 5.00 > 8δy GC11 1135.5 10.6 1.825 5.00 > 8δy 

C4 355.9 14.3 1.395 1.98 3.25 GC4 355.9 14.3 1.578 2.28 3.52 

C5 411.4 14.3 1.417 2.16 3.58 GC5 411.4 14.3 1.601 2.43 3.78 

C6 509.8 14.3 1.439 2.52 4.35 GC6 509.8 14.3 1.632 2.78 4.33 

C6-10 523.7 14.3 1.408 2.52 4.31 GC6-10 523.7 14.3 1.619 2.84 4.51 

C6-15 494.6 14.3 1.457 2.34 4.11 GC6-15 494.6 14.3 1.645 2.76 4.14 

C6-20 465.5 14.3 1.501 2.28 3.87 GC6-20 465.5 14.3 1.666 2.61 3.88 

C6-30 407.3 14.3 1.575 2.22 3.52 GC6-30 407.3 14.3 1.689 2.34 3.48 

C12 669.8 14.3 1.467 3.00 5.63 GC12 669.8 14.3 1.704 3.00 6.02 

C13 975.8 14.3 1.501 5.00 > 8δy GC13 975.8 14.3 1.738 4.00 > 8δy 

C7 213.6 39.7 1.334 1.88 2.52 GC7 213.6 39.7 1.405 1.88 2.94 

C8 246.8 39.7 1.381 2.00 2.88 GC8 246.8 39.7 1.445 2.00 3.35 

C9 305.9 39.7 1.408 1.98 3.49 GC9 305.9 39.7 1.460 2.08 3.57 

C14 401.9 39.7 1.418 2.34 4.38 GC14 401.9 39.7 1.489 2.33 4.38 

C15 585.5 39.7 1.436 2.46 7.12 GC15 585.5 39.7 1.508 2.91 6.12 

 

 

Fig. 2.10. Ultimate Strength of C and GC Columns. 
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Table 2.2 shows an increasing trend of strength and ductility in both the C and GC columns as the 

Rt and λ decrease. All δm/δy and δ0.9/δy values of both the C and GC columns are plotted vs. 

integrated Rt, λ and/or P/Py, as shown in Fig. 2.11. The δ0.9/δy values of C11, C13, GC11, and 

GC12 columns are not obtainable in the analysis as the post-buckling strength does not drop to 

90% of the ultimate strength as the lateral displacement increases. The proposed formulae that fit 

the computed δm/δy and δ0.9/δy values of the analyzed columns are as follows: 
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As can be seen from Fig. 2.8, the axial load magnitude has a significant effect on the post-buckling 

of the C and GC columns. Therefore, the axial load effect is considered in the fitting of the equation 

of the ductility parameter δ0.9/δy as it appears in Eqs. (2.7) and (2.9). In contrast, the axial load has 

an insignificant effect on the maximum displacement of the C and GC columns. Thus, axial load 

influence is not included in the equation fitting of δm/δy parameter, as shown in Eqs. (2.6) and (2.8). 
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Fig. 2.11. Ductility of C and GC Columns: (a) δm/δy, and (b) δ0.9/δy. 

2.8 Summary 

In this chapter, the cyclic behavior of thin-walled steel tubular circular columns with uniform (C) 

and graded-thickness (GC) was investigated through FE numerical modeling. GC columns were 

introduced to improve the behavior of C columns. The effect of the radius-to-thickness ratio 

parameter (Rt), the column slenderness ratio parameter (λ), the axial load ratio(P/Py), and the 

number of cycles of loading (N) were investigated. Based on this study, some important 

conclusions are summarized as follows:  

• A satisfactory agreement between the analysis and experimental results confirms the ability 

of the FE M to capture the column behavior taking into account the local buckling of thin-

walled steel tubular columns under combined constant axial force and unidirectional cyclic 

lateral displacement. The predicted ultimate strength of the C1 column obtained from the 

FEM differs only by 3% from the experimental results. 

• Graded-thickness columns (GC) were introduced to improve the behavior of uniform thin-

walled steel tubular circular columns (C), which resulted in significant improvements in 
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the strength, ductility, and post-buckling. Generally, an improvement of 21% and 16% in 

the ultimate strength was achieved using GC columns compared to C columns when λ = 

0.26 and 0.3, respectively. In the case of λ = 0.5, the ultimate strength was improved by 

only 5% as GC columns compared to C columns. 

•  An extensive parametric study indicates that with the decrease of Rt and λ, an increase was 

obtained in ultimate strength, ductility, and post-buckling. Also, the ultimate strength of 

the C and GC columns decreased when the axial load was increased. This effect was more 

significant as the displacement increased beyond 3δy. Moreover, a significant strength 

deterioration occurred when loading cycles number (N) at each displacement level 

increased.  

•  Finally, proposed formulae to predict the ultimate strength and ductility of C and GC 

columns are provided.  The proposed formulae are expected to be useful in the practical 

design.  
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CHAPTER 3 Stiffened Square Box Columns under Unidirectional Cyclic 

Lateral Loading 

3.1 Introduction 

This chapter aims to propose a newly graded-thickness thin-walled steel stiffened square box 

columns (GB) in an attempt to improve the ultimate strength, ductility, energy absorption, and 

post-buckling of a uniform thin-walled steel stiffened square box columns (B). To achieve this 

goal, a uniform thin-walled steel stiffened square box column (B1) has been numerically analyzed 

under a constant axial force (P) and unidirectional cyclic lateral loading. The accuracy of the 

adopted FEM has been verified based on the experimental results in the literature (Nishikawa et 

al., 1998b). Then, a GB column with size and volume of material equivalent to a B column is 

introduced. The study results indicate that the proposed GB column shows significant 

improvements in ultimate strength, ductility, energy absorption, and post-buckling compared to its 

counterpart B column emphasizing the effect of the plate thickness and sectional configuration in 

the GB columns. The main reason for the improved behavior of the GB columns is their ability to 

eliminate the buckling near the base of the column (section A-A, see Fig. 3.1 and Fig. 3.2) where 

the buckling most likely occurs. In the section 3.5, a parametric study is carried out to assess the 

effects of key design parameters on the strength, ductility, and energy dissipation of both B and 

GB columns. These key parameters include the width-to-thickness ratio parameter (Rf), the column 

slenderness ratio parameter (λ), the magnitude of the axial load (P/Py), and the number of loading 

cycles (N). Finally, a series of design formulae is given to predict the strength and ductility of the 

B and GB columns. The proposed formulae are expected to be useful guidelines in the practical 

design and steel fabrication.  
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3.2 Numerical Model  

A series of FE analyses on the cyclic behavior of thin-walled steel stiffened square box columns 

are carried out using a commercial finite element software, Abaqus/Standard version 6.14 (Hibbit 

et al., 2014a). The FEM considers both material and geometric nonlinearities. The linear kinematic 

hardening material model with the von Mises yield criterion and associated plastic flow rule, is 

used in this study. This model is used to simulate the inelastic behavior of materials that are 

subjected to cyclic loading. More details about this model are reported in (Chaboche, 1986; Hassan 

et al., 2018a; Mamaghani et al., 1995; Shen et al., 1995). The accuracy of the employed FEM is 

validated in comparison with the experimental results available in the literature (Nishikawa et al., 

1998b). The strength and ductility of thin-walled steel stiffened square box columns are affected 

by Rf and λ (Frangopol and Saydam, 2014; Mamaghani and Packer, 2002). Rf controls the local 

buckling of the plate, while λ has a considerable effect on the global stability of the column (Aoki 

and Susantha, 2005a; Mamaghani, 2008; Mamaghani and Packer, 2002). For the tested column 

(B1 column), definitions of Rf and  λ parameters are given as follows (Aoki and Susantha, 2005b; 

Frangopol and Saydam, 2014):    
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Where h = column height = 3403 mm; r = radius of gyration of cross section = 356 mm; σy = yield 

stress= 378.6 MPa; E = Young’s modulus = 206 GPa; v = Poisson’s ratio = 0.3; D = plate width = 

900 mm; and t = plate thickness = 9 mm, kR = buckling coefficient of the subpanel, n = the number 
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of subpanels for each plate. The tested column data are reported in the literature (Nishikawa et al., 

1998b). During the experiment, the cantilever column is fixed at the base and subjected to constant 

axial force (P) and quasi-static unidirectional cyclic lateral displacement at its top. In thin-walled 

steel stiffened square box columns, the experimental results indicate that local buckling occurs 

near the column base in a range that is equal to the side width (D) (Nishikawa et al., 1998a; Tang 

et al., 2016b; Usami, 1996). For this purpose, as shown in Fig. 3.1, subpanels, longitudinal 

stiffeners, and diaphragms are modeled by the four-node shell elements with reduced integration, 

S4R. These elements consider accurately the local buckling for the lower part of the column (2D). 

The beam-column element (B31) is employed for the upper part of the column (h-2D). All used 

elements are available in the Abaqus library (Hibbit et al., 2014a). The interface between the S4R 

and B31 elements has been modeled using the multi-point constraint (MPC). For computational 

efficiency, the bottom half of the lower part (equal to the side width of the square box section, D) 

is divided into 30 S4R elements, while the remaining height (D) is only divided into 18 S4R 

elements. Each subpanel between the stiffeners has six columns of S4R elements. Three columns 

of S4R elements are assigned in the longitudinal stiffeners. The upper part of the column (height 

of h-2D) is divided into B31 elements with the size of 90 mm. The mesh sizes stated above are 

decided by trial-and-error. It is found that such mesh density provides accurate results but does not 

significantly increase the computational time. In S4R elements, the default value of five integration 

points over the thickness is used. The displacement convergence criterion is selected in the analysis 

and the convergence tolerance is taken as 10-5. The initial geometrical imperfection and residual 

stresses are not considered in the current analysis as they were not quantified in the tested columns 

(Goto et al., 1998; Nishikawa et al., 1996, 1998b). Moreover, both initial geometrical imperfection 

and residual stresses due to welding of the flange and web plates have insignificant influence on 
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the overall cyclic behavior after the first half-cycle (Ucak and Tsopelas, 2012). Banno et al. (1998) 

(Banno et al., 1998) and Mamaghani et al. (1996) (Mamaghani et al., 1996a, 1996b) have found 

that effects of initial geometrical imperfection and residual stresses will reduce the initial stiffness 

and strength under monotonic loading but have insignificant effect on the overall hysteretic 

response of thin-walled structures under cyclic loading. Different studies concluded that the 

residual stresses effect on the overall cyclic behavior can be neglected (Hassan et al., 2018b). Table 

3.1 lists the material and geometrical properties of the analyzed B and BG columns. 

3.2.1 Unidirectional Cyclic Loading Protocol 

The unidirectional displacement-controlled cyclic loading protocol is employed in this study, as 

shown in Fig. 3.1d. The solid line signifies one-cycle loading (N = 1), while the dashed line refers 

to three-cycle loading (N = 3). Throughout the loading history, a quasi-static cyclic lateral loading 

is applied to the top of the column accompanied by constant axial force (P). The amplitude of the 

cyclic displacement is increased step by step as a multiple of the yield displacement (δy) which is 

defined by Eq. (3.3):  

 

3

3

y

y

H h

EI
 =

 
 (3.3) 

y y

P S
H

A h

 

= − 
   

 (3.4) 

 

where Eq. (3.4) is to calculate the lateral yield load and A, h, E, I, and S = cross-sectional area, the 

height, the young’s modulus, moment of inertia of the cross section, and the elastic section 

modulus of the column, respectively (see Table 3.1) (Banno et al., 1998; Nishikawa et al., 1998b). 
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The yield displacements and lateral yield loads for all analyzed B and BG columns are listed in 

Table 3.2. 

 

 

Fig. 3.1. B Column Model: (a) Column; (b) FE Meshing; (c) Cross Section; and (d) Loading Program. 

  

3.3 Proposed Thin-Walled Steel Column with Graded Thickness 

Under combined axial force and unidirectional cyclic lateral loading, B columns experience 

premature buckling, whether in terms of local buckling or overall buckling near the base of the 

column in a range that is equal to the side width of the square box section (D) (Nishikawa et al., 

1998a; Tang et al., 2016b; Usami, 1996). This buckling detracts from B columns’ strength and 

ductility capacities. To overcome these limitations, thin-walled steel stiffened square box columns 

with graded thickness (denoted as GB in the subsequent text) are proposed as  
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Fig. 3.2. GB Column Model: (a) Column, and (b) Graded-thickness Sections. 

 

alternatives for the uniform thin-walled steel stiffened square box columns (B). The height and 

sides of the column are kept the same for both B and GB columns. The GB column is divided into 

three segments of constant cross sections along its longitudinal axis. The height of the first and 

second segments is equal to the sides of the square box section (D). The third segment has a height 

of (h-2D). As shown in Fig. 3.2, a thicker cross section (t1=1.25t) is used along the first segment, 

and the original thickness (t2= t; thickness of  B column) is retained for the second segment. 

Finally, the remaining material volume is distributed on the third segment with t3. The above 

configurations of the GB column are chosen based on which achieves favorable behavior by 

eliminating local buckling near the base of the column. Table 3.1 shows the material and 
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geometrical properties of the B and GB columns. As noted, the same material and geometrical 

properties (except for the plate thickness), element type, mesh size, boundary conditions, and 

loading protocol are used for both B and GB columns.  

3.4 Numerical Results and Discussion 

In this section, the computed lateral load vs. lateral displacement hysteresis curve of the tested 

column (B1 column), obtained using a commercial finite element software, Abaqus/standards 

version 6.14 (Hibbit et al., 2014a) is presented. The accuracy of the employed FEM has been 

substantiated using the experimental results that were obtained by the Public Works Research 

Institute (PWRI) of Japan (Nishikawa et al., 1998b). 

3.4.1 Comparison of Numerical and Experimental Results 

Fig. 3.3 compares the normalized lateral load vs. lateral displacement hysteresis curves of the B1 

column obtained from the FE analysis and experiment (Nishikawa et al., 1998b), under the one-

unidirectional cycle lateral displacement history (see Fig. 3.1d). The solid line denotes the 

numerical results, while the dashed line stands for the experimental results. In this figure, Hy and 

δy denote the lateral yield load and yield displacement, respectively. As seen in Fig. 3.3, the 

comparison shows a relatively good match with the experimental results. The FEM predicts the 

ultimate strength of the B1 column with less than 5% error (FEM: Hmax/Hy = 1.33, Experiment: 

Hmax/Hy = 1.40). This indicates that FE analysis, using the kinematic hardening material model, 

could reasonably capture the structural behavior of thin-walled steel stiffened square box columns 

with regard to local buckling.  
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Table 3.1. Material and Geometrical Properties of Analyzed B and GB Columns. 

B Columns 

 

GB Columns 

Column h(mm) t(mm) Rf λ P/Py Column h(mm) 
t (mm) 

Rf λ P/Py 
t1 t2 t3 

B1 -tested 3403 9.00 0.56 0.26 0.122 

 

GB1 3403 11.25 9.00 7.75 0.56 0.26 0.122 

B2 3403 11.00 0.46 0.26 0.122 GB2 3403 13.75 11.00 9.46 0.46 0.26 0.122 

B3 3403 14.00 0.36 0.26 0.122 GB3 3403 17.50 14.00 12.00 0.36 0.26 0.122 

B4 3403 16.90 0.30 0.26 0.122 GB4 3403 21.14 16.90 14.55 0.30 0.26 0.122 

B5 3403 19.50 0.26 0.26 0.122 GB5 3403 24.40 19.50 16.80 0.26 0.26 0.122 

B5-10 3403 19.50 0.26 0.26 0.100 GB5-10 3403 24.40 19.50 16.80 0.26 0.26 0.100 

B5-15 3403 19.50 0.26 0.26 0.150 GB5-15 3403 24.40 19.50 16.80 0.26 0.26 0.150 

B5-20 3403 19.50 0.26 0.26 0.200 GB5-20 3403 24.40 19.50 16.80 0.26 0.26 0.200 

B5-30 3403 19.50 0.26 0.26 0.300 GB5-30 3403 24.40 19.50 16.80 0.26 0.26 0.300 

B6 3920 9.00 0.56 0.30 0.122 GB6 3920 11.25 9.00 8.00 0.56 0.30 0.122 

B7 3920 11.00 0.46 0.30 0.122 GB7 3920 13.00 11.00 9.36 0.46 0.30 0.122 

B8 3920 14.00 0.36 0.30 0.122 GB8 3920 16.25 14.00 11.65 0.36 0.30 0.122 

B9 3920 16.90 0.30 0.30 0.122 GB9 3920 21.14 16.90 15.13 0.30 0.30 0.122 

B10 3920 19.50 0.26 0.30 0.122 GB10 3920 16.25 19.50 11.65 0.26 0.30 0.122 

B11 6530 9.00 0.56 0.50 0.122 GB11 6530 11.25 9.00 8.60 0.56 0.50 0.122 

B12 6530 11.00 0.46 0.50 0.122 GB12 6530 13.00 11.00 9.96 0.46 0.50 0.122 

B13 6530 14.00 0.36 0.50 0.122 GB13 6530 16.25 14.00 12.40 0.36 0.50 0.122 

B14 6530 16.90 0.30 0.50 0.122 GB14 6530 21.14 16.90 16.11 0.30 0.50 0.122 

B15 6530 19.50 0.26 0.50 0.122 GB15 6530 21.75 19.50 16.60 0.26 0.50 0.122 

For all columns: Sides (D) = 900 mm, ts / bs/ l = 6/ 80/ 225 mm. σy = 378.6 MPa, E = 206 GPa, and, ν = 0.3. 

All columns are loaded with one-cycle at each displacement (N = 1), except B3 and GB3 loaded with N = 1 and 3. 

Py = σy*A, A= (D2 – Di
2), Di = D-2t, t = thickness for the B column. 

I = moment of inertia = (D4 – Di
4)/12 (Include the stiffeners), S = elastic section modulus = (D4 – Di

4)/6 D. 

 

3.4.1.1 Buckling Mode of B1 Column  

At the end of the FE analysis, the buckling shape of the column B1 (Fig. 3.4b) is captured and 

compared to the buckling shape from the experiment (Fig. 3.4a) (Chen, W. F. and Duan, 2014). In 

the experiment, the flange suffered from inward local buckling while the web buckled outward 

above the base of the column. This buckling mode is due to the fact that right angle between the 

web and flange keeps unchanged due to rigid connection between them (Mamaghani, 1996). The 

buckling shape is predicted relatively well by the adopted FEM. However, the outward buckling 
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of the web in the analysis is not as prominent as in the experiment. Similar findings have been 

reported in other studies (Goto et al., 1998; Shen et al., 1995; Ucak and Tsopelas, 2006). 

 

 

Fig. 3.3. Hysteretic Behavior of Analysis and Experiment of the B1 column. 

 

 

   
(a) Experiment (Frangopol 

and Saydam, 2014) 

(b) B1 Column (c) GB1 Column 

Fig. 3.4. Buckling Deformation of Columns. 

 

3.4.2 Hysteresis Behavior of B and GB Columns 

To investigate the differences between the hysteretic behavior of B and GB columns under the 

same axial force and unidirectional cyclic lateral loading, a numerical study is conducted using the 
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validated FEM. The normalized lateral load vs. lateral displacement hysteresis curves of the B and 

GB columns are shown in Fig. 3.5. In this figure, a significant increase in both ultimate strength 

and ductility is noticed when the GB columns are used. Moreover, the post-buckling of the GB 

columns is improved as compared to their B column counterparts. For example, in the GB1 column 

(see Fig. 3.5a) with  Rf  of  0.56 and λ of 0.26, the normalized ultimate strength (i.e., Hmax/Hy) is 

1.65 and the corresponding normalized maximum displacement (i.e., δm/δy) occurs at 3 which are 

greater than the B1 column by 24% and 32%, respectively. In the case of the B1 column, the 

buckling starts when the displacement is between 2δy and 3δy. A drop of 36% of the ultimate 

strength (i.e., Hmax/Hy = 1.33 observed at δ = +2.28δy) occurs at δ = +4δy. As the displacement 

increases, the column strength decreases at a fast rate to 14% of its maximum strength by the end 

of the analysis. By contrast, the GB1 column shows its Hmax/Hy at δ = +3δy, which indicates that 

the local buckling occurs between 3δy and 4δy. Only a 9% drop of the Hmax/Hy takes place at δ = 

+4δy, while the residual strength of the GB1 column is 25% of its Hmax/Hy at δ = +8δy. This 

comparison shows the superiority of the GB columns and implies that the local buckling is delayed 

in the GB columns as compared to the B columns. A similar trend is apparent in all the other 

analyzed B and GB columns, as shown in Fig. 3.5)b-j). The buckled shape of the GB1 column (see 

Fig. 3.4c) is compared to the column B1 (see Fig. 3.4b) at the end of the analysis. The GB1 column 

suffers less severe local buckling in the flange and the web as compared to its counterpart B1 

column. A similar buckling is observed for all the other analyzed B and GB columns. 

3.5 Parametric Study 

Based on the validated FEM, a comprehensive parametric study is carried out to provide insight 

into the effect of key design parameters on the strength, ductility, and energy absorption capacity 
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of the B and GB columns. A total of 40 columns, including one tested column (B1 column), are 

analyzed. The main studied parameters that are commonly considered in the practical design and 

that affect the overall behavior of the thin-walled steel stiffened square box columns are: the width-

to-thickness ratio parameter (Rf) with a range of  (0.26 – 0.56), the column slenderness ratio 

parameter (λ) varying from 0.26 to 0.5, the axial load ratio (P/Py), where five different ratios (i.e. 

P/Py =  0.1, 0.122, 0.15, 0.20, and, 0.3) are applied on the B5 and GB5 columns, and the number 

of loading cycles at each displacement amplitude (N). To study the effect of the loading cycle 

numbers (N), all the columns are analyzed under one-cycle displacement (N = 1), except the B3 

and GB3 columns, which have been analyzed under one (N = 1), and three (N = 3) displacement 

cycles. The ranges of the studied parameters are selected as they are commonly used by the 

researchers (Ucak and Tsopelas, 2006; Usami et al., 2000b). Additionally, in the practical design, 

0.3 ≤ Rf ≤ 0.5 and 0.2 ≤ λ ≤ 0.5 are generally used for bridge piers with square box cross sections 

(Chen, W. F. and Duan, 2014). For thin-walled steel stiffened square box columns, diaphragms 

are usually installed at an interval smaller than the pier width (D), α = a/D ≤ 1.0, where a is the 

distance between diaphragms (Chen, W. F. and Duan, 2014). There is no limitation in n. However, 

n = 4-6 is usually used. The columns listed in Table 3.1 assumed to be made of carbon steel SM490 

(JIS, 2012) (equivalent to ASTM A242 (ASTM, 2018)) as the tested column (B1). 

3.5.1 Effect of Width-to-Thickness Ratio Parameter (Rf) 

The effect of the width-to-thickness ratio parameter (Rf) on the strength and ductility of the B and 

GB columns is studied. The increase in Rf might be either due to an increase in the sides of the 

column or a decrease in the thickness. In this chapter, all columns are analyzed by keeping the 

sides of the column constant and changing the thickness. Fig. 3.6 shows the envelope curves for 

different values of Rf for both B and GB columns. The results indicate that by decreasing Rf and 
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keeping all other parameters unchanged, the ultimate strength and ductility of both B and GB 

columns are increased. For example, the B10 column has slightly higher energy absorption and 

ductility capacity than that of the B6 column, although, the improvements to the Hmax/Hy and δm/δy  

                          

                          

                          

 Fig. 3.5. Hysteretic Behavior: (a) B1 & GB1, (b) B2 & GB2, (c) B3 & GB3, (d) B4 & GB4, (e) B5 & GB5, (f) B6 & 

GB6, (g) B7 & GB7, (h) B8 & GB8, (i) B9 & GB9, and (h) B10 & GB10. 
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Fig. 4.5. Continued. 

 

 

are not substantial when Rf  decreases from 0.56 to 0.26 (see Fig. 3.6b). A similar trend is noticed 

in the cases of the GB10 and GB6 columns, as shown in Fig. 3.6d. In addition, the slope of the 

post-buckling curve becomes less steep as Rf  decreases. After the peak, the strength drops twice 

as fast as the GB1 column (at an average of 40%) and B1 column (at an average of 48%) compared 

to the GB5 column (at an average of 18%) and B5 column (at an average of 24%). In other words, 

columns with smaller Rf  values absorb more energy and experience higher ductility than those with 

larger Rf values. 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

B7
GB7

(g)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

B8
GB8

(h)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

B9
GB9

(i)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

B10
GB10

(j)



www.manaraa.com

 

67 

 

3.5.2 Effect of Slenderness Ratio Parameter (λ) 

The effect of the slenderness ratio parameter (λ) on the strength and ductility of the B and GB 

columns is shown in Fig. 3.7. Both ultimate strength and ductility are increased as λ gets smaller 

in both B and GB columns. For example, when λ decreases from 0.5 in the B15 column to 0.26 in 

the B5 column, the Hmax/Hy and δm/δy are increased by 6.25% and 72%, respectively (see Fig. 3.7b). 

In the case of GB columns, a similar tendency is apparent when λ decreases from 0.5 in the case 

of the GB15 column to 0.26 in the GB5 column (see Fig. 3.7d). 

 

               

               

Fig. 3.6. Effect of Rf  parameter: (a) B columns with λ = 0.26, (b) B columns with λ = 0.3, (c) GB columns with λ = 

0.26, and (d) GB columns with λ = 0.3. 
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The Hmax/Hy and δm/δy are increased by 16% and 67%, respectively. In addition, the area 

surrounded by the envelope curve decreases, and the slope of the post-buckling curve becomes 

steeper after the peak as λ gets higher, especially, in the case of λ = 0.5. In other words, the strength 

drops at a very fast rate in average of 166% and 120% for the B13 and GB13 columns, respectively, 

after the peak. In the case of λ = 0.5 both columns have zero-strength capacity at about δ = +6δy 

as noticed in Fig. 3.7. On the other hand, in the case of λ = 0.26, less of a strength drop occurs. 

The strength of the B3 and GB3 columns drops at an average of 33% and 22%, respectively. The 

reason is attributed to the P-Δ effect in the case of the long columns (Gao et al., 1998a).  

 

                

                

Fig. 3.7. Effect of λ parameter: (a) B columns with Rf = 0.36, (b) B columns with Rf = 0.26, (c) GB columns with Rf 

= 0.36, and (d) GB columns with Rf = 0.26. 
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3.5.3 Effect of Axial Load (P/Py) 

The effect of the axial load on the ultimate strength and ductility of the B and GB columns is 

investigated. Five of the B5 columns (B5-10, B5-12.2, B5-15, B5-20, and B5-30) and five of the 

GB5 columns (GB5-10, GB5-12.2, GB5-15, GB5-20, and GB5-30) are analyzed under different 

axial loads, where the number after the hyphen refers to the applied axial load ratio (i.e., P/Py = 

0.1, 0.122, 0.15, 0.2, and 0.3, respectively). The envelope curves of the lateral load (H/Hy0) vs. 

lateral displacement (δ/δy0) are normalized by Hy0 and δy0 to highlight the influence of the axial 

load, as shown in Fig. 3.8. Hy0 and δy0 denote the lateral yield load and the yield displacement 

under zero axial load, respectively. As the axial load increases, the Hmax/Hy0 decreases due to the 

P-Δ effect in the case of large axial loads (Gao et al., 1998a; Usami et al., 2000b). For example, 

the Hmax/Hy0 is decreased by 14.5% and 8.6% in the cases of the B5 and GB5 columns, respectively, 

when P/Py increases from 10% to 30%. Moreover, in the cases of B5-30 and GB5-30 columns, the 

slope of the post-buckling curve becomes steeper, when the columns absorb less energy under the 

cyclic load. When P/Py = 0.3, the post-buckling slope of the B5-30 and GB5-30 columns decreases 

at an average of 76% and 47%, respectively, in each loading step. The slope of the B5-10 and 

GB5-10 columns decreases by 20% and 12%, respectively. In Fig. 3.8a, it should be noted that the 

B5-30 column reaches a zero-strength capacity level around δ = +5δy0, while the GB5-30 column 

can sustain more lateral load at the same displacement level.  

3.5.4 Effect of Number of Loading Cycles (N) 

Fig. 3.9 shows the comparison of the computed envelope curves of the B3 (Fig. 3.9a) and GB3 

(Fig. 3.9b) columns in the cases of one (N = 1) and three (N = 3) loading cycles at each lateral 

displacement amplitude.  
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(a) B5 Column                                                             (b) GB5 Column 

Fig. 3.8. Envelope Curves with Different Axial Load. 

  

In the B3 column, it is noted that when the displacement is greater than 2δy, larger damage is 

observed, and the strength decreases rapidly in the case of N = 3 as compared to N = 1. By contrast, 

the strength starts to decrease at a fast rate approximately at 3δy in the case of the GB3 column. 

The slope of the post-buckling curve is steeper in the case of N = 3 than that for N = 1 when the 

lateral displacement is greater than 2δy (B3 column) and 3δy (GB3 column). It should be 

emphasized that the deterioration in the GB3 column is considerably less than the B3 column under 

N = 3. For example, B3 and GB3 slopes decrease, respectively, at an average of 27% and 19% in 

the case of N = 1, while, the slopes decrease at average of 123% and 25% in the case of N = 3. On 

the other hand, no remarkable effect is noticed when δ is less than 2δy (B3 column) and 3δy (GB3 

column) which might be due to small plastic deformation. 
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(a) B3 Column                                                                    (b) GB3 Column 

Fig. 3.9. Effect of N on Strength and Ductility. 

 

 

Table 3.2. Strength and Ductility Evaluation of B and GB Columns. 

B Columns 

 

GB Columns 

Column Hy (KN) δy (mm) Hmax/Hy δm/δy δ0.9/δy Column Hy (KN) δy (mm) Hmax/Hy δm/δy δ0.9/δy 

B1 -tested 1039 13.80 1.328 2.28 3.30 GB1 1039 13.80 1.644 3.00 4.04 

B2 1240 13.80 1.331 2.34 3.51 GB2 1240 13.80 1.655 3.00 4.07 

B3 1529 13.80 1.332 2.40 3.72 GB3 1529 13.80 1.669 3.00 4.25 

B4 1804 13.8 1.338 2.64 3.98 GB4 1804 13.8 1.678 3.00 4.67 

B5 2044 13.80 1.342 2.88 4.09 GB5 2044 13.80 1.683 3.20 5.08 

B5-10 2095 14.19 1.319 2.88 4.14 GB5-10 2095 14.19 1.653 3.00 5.13 

B5-15 1979 13.40 1.369 2.70 4.02 GB5-15 1979 13.40 1.726 3.20 5.02 

B5-20 1862 12.61 1.411 2.58 3.67 GB5-20 1862 12.61 1.808 3.36 4.87 

B5-30 1630 11.00 1.482 2.58 3.27 GB5-30 1630 11.00 1.958 3.28 4.42 

B6 906 18.37 1.315 2.04 3.20 GB6 906 18.37 1.627 2.82 3.59 

B7 1076 18.37 1.319 2.16 3.24 GB7 1076 18.37 1.639 2.82 3.72 

B8 1327 18.37 1.321 2.22 3.28 GB8 1327 18.37 1.657 3.00 4.17 

B9 1566 18.37 1.324 2.28 3.44 GB9 1566 18.37 1.663 3.00 4.37 

B10 1774 18.37 1.327 2.46 3.71 GB10 1774 18.37 1.669 3.04 4.77 

B11 544 50.97 1.240 1.58 2.26 GB11 544 50.97 1.436 1.86 2.44 

B12 646 50.97 1.243 1.60 2.29 GB12 646 50.97 1.441 1.88 2.42 

B13 797 50.97 1.248 1.62 2.35 GB13 797 50.97 1.444 1.9 2.36 

B14 940 50.97 1.256 1.62 2.59 GB14 940 50.97 1.455 1.92 2.89 

B15 1065 50.97 1.263 1.68 2.86 GB15 1065 50.97 1.456 1.92 2.91 
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3.6 Strength and Ductility Evaluation of B and GB Columns 

Table 3.2 shows the computed ultimate strength from the lateral load vs. lateral displacement 

curves of the analyzed columns. For both B and GB columns, the Hmax/Hy vs. (1+P/Py) Rf λ 

relationship is plotted taking into account the axial load (P/Py) effect as shown in Fig. 3.10. The 

proposed formulae that fit the computed ultimate strength of the analyzed B and GB columns are 

as follows: 
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Based on Fig. 3.10, the ultimate strength is improved if Rf  decreases under constant λ. Similarly, 

the ultimate strength increases if λ decreases with constant Rf. The failure of thin-walled steel 

columns is considered to have occurred when the displacement equals either δm or δ0.9. δm is the 

displacement corresponding to the ultimate strength, where δ0.9  is defined as the displacement 

point where the strength drops to 90% of its ultimate value after the peak (Mamaghani et al., 2015, 

1995; Shen et al., 1995; Usami, 1996). The δm/δy and δ0.9/δy are key parameters used to evaluate 

the ductility performance for both B and GB columns. However, the δ0.9/δy parameter considers 

the cyclic characteristics and fully utilizes the strength of the steel at large plastic displacements. 

Moreover, the strength of thin-walled steel columns decreases significantly after the peak due to 

the influence of local buckling. Therefore, it is more reasonable to use the δ0.9/δy parameter to 

evaluate ductility (Gao et al., 1998a; Mamaghani et al., 2015; Usami et al., 2000b). Table 3.2 
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shows an increasing trend of the strength and ductility in both the B and GB columns as the Rf and 

λ decrease. All δm/δy and δ0.9/δy values of both B and GB columns are plotted vs. integrated Rf, λ 

and/or P/Py, as shown in Fig. 3.11. The proposed formulae that fit the computed δm/δy and δ0.9/δy 

values of the analyzed columns are as follows: 
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As can be seen from Fig. 3.8, the axial load magnitude has a significant effect on the post-buckling 

of the B and GB columns. Therefore, the axial load influence is considered in the fitting of the 

ductility parameter δ0.9/δy as it appears in Eqs. (3.8) and (3.10). In contrast, the axial load has an 

insignificant effect on the maximum displacement of the B and GB columns. Thus, axial load 

influence is not included in the fitting of the δm/δy parameter, as shown in Eqs. (3.7) and (3.9). The 

applicable restrictions of these formulae are: 0.26 ≤ Rf ≤ 0.56, 0.26 ≤ λ ≤ 0.5, P/Py ≤ 0.3. 
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Fig. 3.10. Ultimate Strength of the B and GB Columns. 

 

   

Fig. 3.11. Ductility Formulae for B and GB Columns: (a) δm/δy, and (b) δ0.9/δy. 
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ratio(P/Py), and the number of cycles of loading (N) were studied. Based on this study, some 

important conclusions have been drawn, as follows:  

• A satisfactory match between the analysis and experimental results confirms the ability of 

the FEM to capture the column behavior taking into account the local buckling of thin-

walled stiffened square box steel columns under a constant axial force and unidirectional 

cyclic lateral displacement. The predicted ultimate strength of the B1 column obtained 

from the FEM differs with less than 5% error from the experimental results. 

• Graded-thickness columns (GB) were introduced to improve the behavior of uniform thin-

walled steel columns (B), which resulted in significant improvements in their strength, 

ductility, and post-buckling. Generally, an improvement of 25% in the ultimate strength 

was achieved using GB columns compared to B columns when λ = 0.26 and 0.3. In the 

case of λ = 0.5, the ultimate strength was improved by 16% in the GB columns as compared 

B columns. 

•  A comprehensive parametric study indicates that with the decrease of Rf  and λ, an increase 

was obtained in both ultimate strength and ductility capacities. Also, the ultimate strength 

decreased when the axial load was increased. This effect was more significant as the 

displacement increased beyond 3δy. Moreover, a significant strength deterioration occurred 

when loading cycles number (N) at each displacement level increased.  

•  Finally, a series of proposed formulae to predict the ultimate strength and ductility of the 

B and GB columns was provided. The proposed formulae are expected to be useful for the 

practical design of the thin-walled steel stiffened square box columns.  
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CHAPTER 4 Circular Columns under Bidirectional Cyclic Lateral Loading 

4.1 Introduction 

This chapter aims to evaluate the hysteretic behavior of uniform (BC) and proposed graded-

thickness (BGC) thin-walled steel tubular circular columns under a constant axial force and 

bidirectional cyclic lateral loading. To achieve this goal, a uniform thin-walled steel tubular 

circular column has been numerically analyzed under a constant axial force and circular 

bidirectional cyclic lateral loading. The accuracy of the adopted FEM has been substantiated based 

on the experimental results in the literature (Goto et al., 2006). Then, the proposed BGC column 

with size and volume of material equivalent to a BC column is investigated. The study results 

indicate that BGC columns show significant improvements in ultimate strength, ductility, and post-

buckling compared to their counterpart BC columns, emphasizing the effect of the plate thickness 

and sectional configuration of the proposed BGC columns. The main reason for the improved 

overall hysteretic behavior of the BGC columns is their ability to mitigate and/or eliminate the 

local buckling that commonly occurs near the base of the column.  

4.2 Numerical Model  

FE analysis is carried out using the finite-element software ABAQUS/Standard version 6.14 where 

material and geometric nonlinearities are considered (Hibbit et al., 2014a). The accuracy of the 

employed FEM is validated in comparison with the experimental results (test PT3.5-1) available 

in the literature (Goto et al., 2006). Rt and λ are key design parameters in the practical design of 

thin-walled steel tubular circular columns, where Rt  affects the local buckling and λ controls the 

global buckling (Al-Kaseasbeh and Mamaghani, 2018). Rt and λ of the column are defined as 

follows: 
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where h = column height, D = column diameter, t = plate thickness, r = radius of gyration of cross 

section, σy = yield stress, E = Young’s modulus, and v = Poisson’s ratio. For the tested column 

(test PT3.5-1), h = 1460 mm,  D = 258.2 mm, t =3.5 mm, r = 90 mm, σy = 350 MPa, E = 206 GPa, 

and v = 0.3 (Goto et al., 2006). The analyzed cantilever column is assumed to be fixed at the base 

and subjected to a constant axial load (P) and circular bidirectional cyclic lateral displacement at 

the top, as shown in Fig. 4.1. The two-node beam element (B31) is employed for the upper part of 

the column, whereas the reduced integration four-node shell elements (S4R), which accurately 

consider the local buckling, are used for the lower part of the column.  

 

Fig. 4.1.Tested Column Model: (a) Column; (b) FE Meshing; (c) Cross Section; and (d) Loading Program. 
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All used elements are available in the Abaqus/Standard library. The interface between S4R and 

B31 elements is modeled using multi-point constraint (MPC). For computational efficiency, the 

bottom portion of the lower part (equal to the cross-section diameter, D), where the local buckling 

usually occurs, is divided into 27 S4R elements. The remaining height of the lower part (2D) is 

divided only in 21 S4R elements. 40 S4R elements are used in the circumferential direction in the 

lower part of the column. The upper part of the column (height of h-2D) is divided into B31 

elements with size of 90 mm. The above-stated mesh sizes are determined by trial and error and 

found to give more efficient and reasonable results. 

4.2.1 Bidirectional Cyclic Loading Protocol 

Among different bidirectional loading paths, the displacement-controlled circular cyclic lateral 

loading is adopted as the most critical and severe loading program, illustrated in Fig. 4.1d (Goto 

et al., 2006; Ucak and Tsopelas, 2014). The adopted loading is quasi-statically applied to the top 

of the column with a constant axial load (P). The amplitude of the cyclic displacement is increased 

as a multiple of the yield displacement (δy) which is defined by:   

3
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where A, I, and S , respectively, are the cross-sectional area, moment of inertia, and elastic section 

modulus of the column (Al-Kaseasbeh and Mamaghani, 2018; Goto et al., 2006).  
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4.3 Comparison of Numerical and Experimental Results 

The comparison of lateral load vs. lateral displacement hysteresis curves of the tested column, in 

both lateral X and Z directions obtained from the analysis are compared to the experimental results 

in the literature (Goto et al., 2006) and presented in Fig. 4.2.The solid line signifies the analysis 

results, while the dashed line denotes the experimental results. Hy and δy are the lateral yield load 

and the yield displacement, respectively. In both X and Z directions, a relatively good agreement 

with the experimental results is noticed. The FEM predicts the ultimate strength of the column 

with 1.5% error in X direction (FEM: Hxmax/Hy = 1.33, Experiment: Hxmax/Hy = 1.35, see Fig. 4.2a) 

and 4% in Z direction (FEM: Hzmax/Hy = 1.25, Experiment: Hzmax/Hy = 1.30, see Fig. 4.2b). As the 

comparison results revealed, the FEM, using the kinematic hardening material model, is able to 

capture the structural behavior of thin-walled steel tubular circular columns with reasonable 

accuracy considering the local buckling under a constant axial load and circular bidirectional cyclic 

lateral loading. In terms of buckling, the buckling shape of the tested column (Goto et al., 2006) 

(see Fig. 4.3a) is compared to the FE buckling shape at the end of the analysis (see Fig. 4.3b). In 

both the experiment and FE analysis, the column bulged outward near the base and formed an 

elephant-foot-bulge buckling mode. As a result, the buckling shape is captured relatively well by 

the adopted FEM. 

4.4 Review of Proposed Thin-Walled Steel Column with Graded Thickness 

Authors have recently proposed and investigated the overall behavior of the graded-thickness thin-

walled steel tubular circular column (called “graded-thickness” column and denoted as BGC in 

this study) to eliminate and delay the local buckling under constant axial load and unidirectional 

cyclic lateral loading (Al-Kaseasbeh and Mamaghani, 2018).  
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Fig. 4.2. Hysteretic Behavior of Analysis and Experiment of the Tested Column. 

 

 

 

 
(a) Experiment (Goto et al., 

2006) 
(b) FE Analysis 

Fig. 4.3. Buckling Deformation of Tested Column. 
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and BGC columns as shown in Fig. 4.4c. In the proposed BGC column (see Fig. 4.4d), the first 

and second segments have a thickness of 1.25t, and t, respectively, where t is the thickness of the 
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based on failure pattern from the available test results in the literature (Usami, 1996). The material 

and geometrical properties of the BC and BGC columns are listed in Table 4.1. The same 

geometrical properties (except the plate thickness) are used for both type of BC and BGC columns, 

which are assumed to be made of the same carbon steel ASTM A36 (ASTM, 2014).  

 
Fig. 4.4. (a) BC Column, (b) FE Meshing, (c) BGC Column, and (b) Graded-thickness Sections. 

 

As shown in Fig. 4.4b, the same FEM details of the tested column, except the FE meshing, are 
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Table 4.1. Material and Geometrical Properties of Analyzed BC and BGC Columns. 

BC Columns 

 

BGC Columns 

Column h(mm) t(mm) Rt λ P/Py Column h(mm) 
t (mm) 

Rt λ P/Py 
t1 t2 t3 

BC1 3403 9.00 0.116 0.26 0.124 BGC1 3403 11.25 9.00 7.75 0.116 0.26 0.124 

BC2 3403 10.45 0.100 0.26 0.124 BGC2 3403 13.00 10.45 9.00 0.100 0.26 0.124 

BC3 3403 13.00 0.080 0.26 0.124 BGC3 3403 16.25 13.00 11.20 0.080 0.26 0.124 

BC10 3403 17.40 0.060 0.26 0.124 BGC10 3403 21.75 17.40 15.00 0.060 0.26 0.124 

BC11 3403 26.00 0.040 0.26 0.124 BGC11 3403 32.65 26.00 22.50 0.040 0.26 0.124 

BC4 3960 9.00 0.116 0.30 0.124 BGC4 3960 11.25 9.00 8.00 0.116 0.30 0.124 

BC5 3960 10.45 0.100 0.30 0.124 BGC5 3960 13.00 10.45 9.36 0.100 0.30 0.124 

BC6 3960 13.00 0.080 0.30 0.124 BGC6 3960 16.25 13.00 11.65 0.080 0.30 0.124 

BC6-10 3960 13.00 0.080 0.30 0.100 BGC6-10 3960 16.25 13.00 11.65 0.080 0.30 0.100 

BC6-15 3960 13.00 0.080 0.30 0.150 BGC6-15 3960 16.25 13.00 11.65 0.080 0.30 0.150 

BC6-20 3960 13.00 0.080 0.30 0.200 BGC6-20 3960 16.25 13.00 11.65 0.080 0.30 0.200 

BC6-30 3960 13.00 0.080 0.30 0.300 BGC6-30 3960 16.25 13.00 11.65 0.080 0.30 0.300 

BC12 3960 17.40 0.060 0.30 0.124 BGC12 3960 21.75 17.40 15.60 0.060 0.30 0.124 

BC13 3960 26.00 0.040 0.30 0.124 BGC13 3960 32.65 26.00 23.40 0.040 0.30 0.124 

BC7 6600 9.00 0.116 0.50 0.124 BGC7 6600 11.25 9.00 8.60 0.116 0.50 0.124 

BC8 6600 10.45 0.100 0.50 0.124 BGC8 6600 13.00 10.45 9.96 0.100 0.50 0.124 

BC9 6600 13.00 0.080 0.50 0.124 BGC9 6600 16.25 13.00 12.40 0.080 0.50 0.124 

BC14 6600 17.40 0.060 0.50 0.124 BGC14 6600 21.75 17.40 16.60 0.060 0.50 0.124 

BC15 6600 26.00 0.040 0.50 0.124 BGC15 6600 32.65 26.00 24.90 0.040 0.50 0.124 

For all columns: Diameter (D) = 900 mm, σy = 289.6 MPa, E = 206 GPa, and, ν = 0.3. 

All columns are loaded with one-cycle at each displacement (N = 1), except BC1 and BGC1 loaded with N = 1 and 

3. Py = σy*A, A=π/4*(D2 – Di
2), Di = D-2t, t = thickness for the BC column. 

 

4.5 Hysteresis Behavior of BC and BGC Columns 

To investigate the hysteretic behavior of BC and BGC columns under a constant axial load and 

circular bidirectional cyclic lateral loading, a numerical study was conducted using the validated 

FEM. In the bidirectional circular cyclic lateral loading, the applied displacement is equal in both 

lateral X and Z directions. Consequently, the response is similar for circular cross-section in both 

X and Z directions (e.g., see the results in Fig. 4.2a and b). In this chapter, the results in the Z 

direction are presented in the further analysis. The normalized lateral load vs. lateral displacement 
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hysteresis loops of both BC and BGC columns are shown in Fig. 4.5. The results in this figure 

reveal significant improvements in both strength and ductility when the proposed BGC columns 

are used. Moreover, the post-buckling of the BGC columns is improved compared to their BC 

column counterparts. For example, the normalized ultimate strength of BGC1 column (i.e., 

Hzmax/Hy = 1.45) is 15% greater than the BC1 column (Hzmax/Hy = 1.26) as shown in Fig. 4.5a. For 

both BC1 and BGC1 columns, the buckling initiates as the normalized maximum displacement 

approaching 2δy (i.e. δzm/δy = 2). However, the buckling initiates at the same time for both BC1 

and BGC1 columns, the strength deterioration happens at a rapid rate in the case of the BC1 column 

compared to BGC1 column. In other words, the Hzmax/Hy of BC1 column drops by 52% at δzm/δy = 

4, while the Hzmax/Hy decreases by 38% in the BGC1 column. These results indicate the superior 

behavior of the proposed BGC columns over the BC columns. A similar behavior exists in the all 

analyzed BC and BGC columns, as shown in  Fig. 4.5(b-f). The comparison of buckling shapes 

for both BC1 and BGC1 columns is shown in Fig. 4.6. The BC1 column bulged outward near the 

base of the column as expected and formed an elephant-foot-budge buckling mode (see Fig. 4.6a), 

while the buckling in the BGC1 column is moved upward from the column base with less severity 

(see Fig. 4.6b). A similar buckling was noticed for the all analyzed BC and BGC columns. 

4.6 Loading Path Effect 

A comparison between unidirectional, presented in Chapter 2, and circular bidirectional cyclic 

lateral loading conditions is conducted to highlight the effect of the cyclic loading pattern on the 

hysteretic behavior of thin-walled steel tubular circular columns. Fig. 4.7 shows the hysteretic 

behavior of the uniform C and BC columns and graded-thickness GC and BGC columns under 

unidirectional and circular bidirectional cyclic lateral loading. 
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Fig. 4.5. Hysteretic Behavior in Z direction of: (a) BC1 & BGC1, (b) BC2 & BGC2, (c) BC3 & BGC3, (d) BC4 & 

BGC4, (e) BC5 & BGC5, and (f) BC9 & BGC9. 
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(a) BC1 Column (b) BGC1 Column (c) C1 Column (d) GC1 Column 

Fig. 4.6. Buckling Deformation of BC1 and BGC1 Columns. 

 

The comparison indicates that the hysteresis loops under circular bidirectional cyclic lateral 

loading is totally different from those under unidirectional cyclic lateral loading. At the same 

amplitude of applied displacement, bidirectional loading pattern significantly causes more 

degradation in the strength and ductility of the column with the same material and structural 

parameters than unidirectional loading pattern. The significant deterioration is due to the 

accelerated local buckling under circular bidirectional cyclic lateral loading. To make a 

quantitative comparison between of the hysteretic behavior of thin-walled steel tubular circular 

columns under unidirectional and circular bidirectional loading conditions, the normalized loading 

path (i.e., Hx/Hy-Hz/Hy  path for bidirectional loading) of BC and BGC columns are plotted as 

shown in Fig. 4.8. In addition, the ultimate strength of C column (Hmax/Hy = 1.403) and GC column 

(Hmax/Hy = 1.675) under one-cycle unidirectional cyclic lateral loading is also superimposed as a 

circular envelope on the Fig. 4.8 with a dashed and dash-dot lines, respectively. The ultimate 
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strength difference is 11% (C vs. BC) and 16% (GC vs. BGC) between unidirectional and circular 

bidirectional cyclic lateral loading. Therefore, the hysteretic behavior of thin-walled steel tubular 

circular columns under unidirectional loading is over-simplified and leads to over-estimated 

strength and ductility capacity. 

4.6.1.1 Buckling Deformations 

Fig. 4.6 compares the buckling shapes of the columns at the end of the analysis. The comparison 

visually indicates that the BC column (δzm/δy = 1.95) (see Fig. 4.6a) and BGC column (δzm/δy = 

1.95) (see Fig. 4.6b), under circular bidirectional cyclic lateral loading, buckled earlier than the C 

column (δm/δy = 2.16) (see Fig. 4.6c) and GC column (δm/δy = 2.71) (see Fig. 4.6d) under 

unidirectional cyclic lateral loading. Furthermore, the magnitude of the local buckling seems more 

critical under circular bidirectional loading. As opposed to the unidirectional cyclic lateral loading, 

it is believed that because all the plates of the column are subjected to loading all the time of the 

analysis under circular bidirectional cyclic lateral loading.  

4.6.1.2 Energy Absorption Capacity 

In order to predict the strength degradation, the dissipated energy of the column is investigated 

and presented in Fig. 4.9. The cumulative dissipated energy is calculated as the sum of the enclosed 

area under the normalized hysteresis loops in X and Z direction for circular bidirectional loading 

and in X direction for unidirectional loading. As observed in Fig. 4.9, the columns with same 

material and geometrical properties, dissipate more energy under the circular bidirectional cyclic 

lateral loading than those under unidirectional cyclic lateral loading which, in turns, results in a 

degradation in the strength and ductility of the column.  
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Fig. 4.7. Hysteretic Behavior of Uniform and Graded-thickness Columns. 

 

                        

Fig. 4.8. Loading Paths of Columns: (a) BC1 vs. C1 Columns, and (b) BGC1 vs. GC1 Columns. 
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Fig. 4.9. Energy Absorption Capacity of Columns. 

4.7 Parametric Study 

A comprehensive parametric study was conducted to provide insight into the effect of key design 

parameters including: radius-to-thickness ratio parameter (Rt), column slenderness ratio parameter 

(λ), magnitude of axial load (P/Py), and number of loading cycles (N), on the overall behavior of  

the BC and BGC columns. The practical range of these parameters in the design of circular bridge 

piers are: 0.03 ≤ Rt ≤ 0.08 , 0.2 ≤ λ ≤ 0.4 and  P/Py ≤ 0.2  (Frangopol and Saydam, 2014; Usami, 

1996). In this section, a total of 40 columns, listed in Table 4.1, is analyzed using the previously 

validated FEM in ABAQUS/Standard (Hibbit et al., 2014b). The main parameters are: Rt varying 

from 0.04 to 0.116, λ with a range of 0.26 - 0.5, the axial load ratio P/Py, where five different ratios 

(i.e., P/Py = 0.1, 0.124, 0.15, 0.20, and, 0.3) are applied on BC6 and BGC6 columns, and the 

number of loading cycles at each displacement amplitude (N). To investigate the effect of N, the 

BC1 and BGC1 columns were analyzed under both one (N = 1), and three (N = 3) cycles at each 

displacement level. 
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4.7.1 Effect of Radius-to-Thickness Ratio Parameter (Rt) 

The effect of the Rt on the strength and ductility of the column was investigated. The increase in 

Rt is either due to an increase in the column radius or a decrease in the thickness. In this study, the 

columns’ diameter is kept constant and the thickness is changed for all the analyzed columns. The 

normalized lateral load vs. lateral displacement envelope curves for both BC and BGC columns 

with different values of Rt are presented in Fig. 4.10. The normalized ultimate strength (i.e., 

Hzmax/Hy) and normalized maximum displacement (i.e., δzm/δy) of both BC and BGC columns are 

improved by decreasing Rt and keeping the other column parameter unchanged. For an example, 

the Hzmax/Hy and δzm/δy are increased by 17% and 54%, respectively, as Rt is decreased from 0.116 

(BC1 column) to 0.04 (BC11 column) with λ = 0.26 (see Fig. 4.10a). In a similar way, as the Rt 

decreases from 0.116 (column BGC1) to 0.04 (column BGC11), Hzmax/Hy and δzm/δy increase by 

14% and 68%, respectively, as shown in Fig. 4.10c. After the peak point, the post-buckling curve 

is less steep as Rt  gets smaller and the column experiences higher ductile behavior. 

4.7.2 Effect of Slenderness Ratio Parameter (λ) 

The effect of the λ on the ultimate strength and ductility of both BC and BGC columns was studied. 

For both BC and BGC columns, the Hzmax/Hy and δzm/δy improve as λ gets smaller as illustrated in 

Fig. 4.11. For instance, the Hzmax/Hy and δzm/δy are increased by 6% and 32%, respectively, as λ 

decreases from 0.5 (BC9 column, Rt = 0.08) to 0.26 (BC3 column, Rt = 0.08) as shown in Fig. 

4.11b. Similarly, the Hzmax/Hy and δzm/δy are improved by 11% and 37%, respectively, as λ 

decreases from 0.5 (BGC9 column, Rt = 0.08) to 0.26 (BGC3 column, Rt = 0.08) when Rt = 0.08 

as shown in Fig. 4.11d. 
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Fig. 4.10. Effect of Rt parameter: (a) BC columns with λ = 0.26, (b) BC columns with λ = 0.5, (c) BGC columns 

with λ = 0.26, and (d) BGC columns with λ = 0.5. 

  

After the peak point, the strength decreases in a faster rate for both BC7 (at an average of 74%) 

and BGC7 (at an average of 35%) columns when λ = 0.5 and Rt = 0.116, while the strength drops 

less for both BC1 (at an average of 28%) and BGC1 (at an average of 20%) in the case of λ = 0.26, 

and Rt = 0.116. In other words, the post-buckling curve slope gets steeper, and the area enclosed 

by the envelope curve decreases when λ is higher. The same trend exists in all other analyzed 

columns with different Rt values. 
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Fig. 4.11. Effect of λ (a) BC columns with Rt = 0.116, (b) BC columns with Rt = 0.08 (c) BGC columns with Rt = 

0.116, and (d) BGC columns with Rt = 0.08. 
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the ultimate strength (i.e., Hzmax/Hy0) decreases as the axial load ratio (P/Py) increases due to the 

P-Δ effect in the case of large axial loads. For example, the Hzmax/Hy0 and δzm/δy0 are increased by 

17% and 8%, respectively, when P/Py decreases from 30% (BC6-30 column) to 10% (BC6-10 

column). In the case of BGC columns, the Hzmax/Hy0 and δzm/δy0 are increased by 30% and 28%, 

respectively, when P/Py decreases from 30% (BGC6-30 column) to 10% (BGC6-10 column). 

Furthermore, the post-buckling curve slope becomes steeper, which, in turn, dissipates less energy, 

as observed in the cases of BC6-30 and BGC6-30 columns, while more energy is dissipated in the 

cases of BC6-10 and BGC6-10 columns, respectively. 

 

                 

(a) BC6 Column                                                               (b) BGC6 Column 

Fig. 4.12. Effect of Axial Load on Strength and Ductility. 
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= 1, while the slopes decrease at an average of 34% and 27% in the case of N = 3. No remarkable 

effect is observed when δ is less than 2δy, which might be due to the small plastic deformation. It 

is worth noting that the deterioration in the BGC1 column is less than in the BC1 column under 

both N = 1 and N = 3. 

 

                 

(a) BC1 column                                                                             (b) BGC1 column 

Fig. 4.13. Effect of N on Ductility Capacity. 
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Table 4.2. Strength and Ductility Evaluation of BC and BGC Columns. 

BC Columns  BGC Columns 

Column Hy (KN) δy (mm) Hzmax/Hy δzm/δy δz0.9/δy 

 

Column Hy (KN) δy (mm) Hzmax/Hy δzm/δy δz0.9/δy 

BC1 414.2 10.6 1.26 1.95 2.53 BGC1 414.2 10.6 1.45 1.96 2.63 

BC2 478.7 10.6 1.26 1.97 2.87 BGC2 478.7 10.6 1.46 1.97 2.87 

BC3 593.2 10.6 1.33 2.54 3.16 BGC3 593.2 10.6 1.46 2.65 3.30 

BC10 779.5 10.6 1.40 2.60 3.68 BGC10 779.5 10.6 1.61 2.74 4.02 

BC11 1135.5 10.6 1.47 3.01 5.80 BGC11 1135.5 10.6 1.65 3.30 6.26 

BC4 355.9 14.3 1.27 1.95 2.33 BGC4 355.9 14.3 1.38 1.95 2.39 

BC5 411.4 14.3 1.29 1.96 2.59 BGC5 411.4 14.3 1.40 1.96 2.66 

BC6 509.8 14.3 1.31 1.97 3.02 BGC6 509.8 14.3 1.40 1.97 3.07 

BC6-10 523.7 14.3 1.30 1.95 3.05 BGC6-10 523.7 14.3 1.40 1.95 3.04 

BC6-15 494.6 14.3 1.33 1.96 3.00 BGC6-15 494.6 14.3 1.40 1.96 3.00 

BC6-20 465.5 14.3 1.36 1.96 2.97 BGC6-20 465.5 14.3 1.39 1.96 3.03 

BC6-30 407.3 14.3 1.38 1.96 3.10 BGC6-30 407.3 14.3 1.39 1.96 3.13 

BC12 669.8 14.3 1.39 2.53 3.54 BGC12 669.8 14.3 1.50 2.66 3.89 

BC13 975.8 14.3 1.45 2.73 5.77 BGC13 975.8 14.3 1.56 2.74 6.00 

BC7 213.6 39.7 1.17 1.90 2.02 BGC7 213.6 39.7 1.24 1.90 2.15 

BC8 246.8 39.7 1.21 1.91 2.07 BGC8 246.8 39.7 1.28 1.92 2.23 

BC9 305.9 39.7 1.25 1.93 2.17 BGC9 305.9 39.7 1.31 1.93 2.65 

BC14 401.9 39.7 1.32 1.93 2.89 BGC14 401.9 39.7 1.35 2.31 2.95 

BC15 585.5 39.7 1.35 2.45 3.38 BGC15 585.5 39.7 1.40 2.78 4.73 

 

The ultimate strength of both BC and BGC columns is improved when integrated parameters 

(1+P/Py) Rt λ decrease as illustrated in Fig. 4.14. The failure of thin-walled steel columns is 

considered to have occurred when the displacement equals either δzm or δz0.9. the δzm is the 

displacement corresponding to Hzmax/Hy, where the δz0.9 is defined as the displacement where the 

post-peak strength drops to 90% of Hzmax/Hy after the peak (Al-Kaseasbeh and Mamaghani, 2018; 

Mamaghani et al., 2015; Usami, 1996). The δzm/δy and δz0.9/δy are key parameters used to evaluate 

the ductility performance for both BC and BGC columns. Moreover, the strength of thin-walled 

steel columns decreases significantly after the peak due to the influence of local buckling. 

Therefore, it is more reasonable to use the δz0.9/δy parameter to evaluate ductility (Gao et al., 1998a; 
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Usami, 1996; Usami et al., 2000b). Table 4.2 shows an increasing trend of the strength and ductility 

in both the BC and BGC columns as the Rt and λ decrease. All δzm/δy and δz0.9/δy values of both BC 

and BGC columns are plotted vs. integrated Rt, λ and/or P/Py, as shown in Fig. 4.15. The proposed 

formulae that fit the computed δzm/δy and δz0.9/δy values of the analyzed columns are as follows: 
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Fig. 4.14. Ultimate Strength of the BC and BGC Columns. 
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As can be seen from Fig. 4.12, the axial load magnitude has a significant effect on the post-

buckling of the BC and BGC columns. Therefore, the axial load influence is considered in the 

fitting of the ductility parameter δz0.9/δy as it appears in Eqs. (4.8) and (4.10). In contrast, the axial 

load has an insignificant effect on the maximum displacement of the BC and BGC columns. Thus, 

the axial load influence is not included in the fitting of the δzm/δy parameter, as shown in Eqs. (4.7) 

and (4.9). The applicable restrictions of these formulae are 0.04 ≤ Rt ≤ 0.116, 0.26 ≤ λ ≤ 0.5, and 

P/Py ≤ 0.3. It is worth mentioning that nonlinear least-squares regression was used for the curve 

fitting. 

 

      

Fig. 4.15. Ductility of BC and BGC Columns: (a) δzm/δy, and (b) δz0.9/δy. 
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columns under circular bidirectional cyclic lateral loading was investigated. From this study, the 

following conclusions are drawn:  

• The numerical results, obtained by using the adopted FEM, show a reasonable agreement 

with the experimental results confirming FEM ability to capture the column cyclic 

elastoplastic behavior under a constant axial load and circular bidirectional cyclic lateral 

loading.  

• The proposed BGC column, with the same size and volume of material of counterpart of 

uniform BC column investigated under a constant axial force and circular bidirectional 

cyclic lateral loading. The results show a significant improvement in the overall hysteretic 

behavior of BGC column compared to the counterpart of BC column. In general, the 

ultimate strength of BGC columns was improved by 13% and 8% as λ = 0.26 and 0.3, 

respectively. In the case of λ = 0.5, the ultimate strength was improved by only 4% for the 

BGC columns compared to BC columns. 

•  The parametric study concluded that the ultimate strength, ductility, and post buckling of 

BC and BGC columns improve with the decrease of Rt and λ, while deteriorate when the 

axial load increases. As the number of loading cycles (N) at each displacement level 

increases, more strength deterioration happens when δ > 2δy.  

•  Based on the extensive parametric study, design formulae in predicting the ultimate 

strength and ductility of the BC and BGC columns have been derived 
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CHAPTER 5 Stiffened Square Box Columns under Bidirectional Cyclic Lateral 

Loading 

5.1 Introduction 

As main goal of this chapter, the proposed graded-thickness thin-walled steel square box columns 

(denoted as BGB in this chapter) is evaluated in regard to the strength and ductility under a a 

constant axial force and circular bidirectional cyclic lateral loading. In order to achieve this goal, 

a thin-walled steel square box column with uniform thickness reported in the literature (Aoki et 

al., 2007; Dang et al., 2017) was numerically analyzed under a constant axial force and circular 

bidirectional cyclic lateral loading to validate the accuracy of the adopted FEM. Then, the proposed 

BGB column with size and volume of material equivalent to a uniform thin-walled steel square 

box column (i.e., BB column) is investigated under the same loading amplitude and conditions. 

The study results indicate the proposed BGB columns are advantageous in achieving significant 

improvements in ultimate strength and ductility compared to their counterpart BB columns, 

emphasizing the effect of the plate thickness and sectional configuration in the proposed BGB 

column. The achieved improvements in the overall hysteretic behavior of the proposed BGB is 

due to their ability to inhibit the local buckling near the base of the column. Furthermore, the 

hysteretic behavior of BB and BGB columns is more severe and critical under circular bidirectional 

cyclic lateral loading compared to unidirectional cyclic lateral loading.  

5.2 Numerical Model 

In this study, a commercial finite element software ABAQUS 6.14 is employed for the FE analysis 

where material and geometric nonlinearities are taken into account during computational process 

(Hibbit et al., 2014a). The validity of the adopted FEM is substantiated with the experimental 



www.manaraa.com

 

99 

 

results reported in the literature (Aoki et al., 2007; Dang et al., 2017). The main structural 

parameters in the practical design of thin-walled steel square box columns are Rf and λ. The local 

buckling is influenced by Rf  and λ affects the global buckling (Al-Kaseasbeh and Mamaghani, 

2019) which are defined as follows: 
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where h = column height, D = column diameter, t = plate thickness, r = radius of gyration of cross 

section, σy = yield stress, E = Young’s modulus, and v = Poisson’s ratio. For the tested column, h 

= 2420 mm,  D = 450 mm, t =6 mm, r = 175 mm, σy = 325 MPa, E = 206 GPa, and v = 0.3 (Aoki 

et al., 2007). As shown in Fig. 5.1, the column is fixed at the bottom and subjected to constant 

axial force (P) and circular bidirectional cyclic lateral displacement at the top. The lower part of 

the column (3D), which accurately consider the local buckling, is modeled by reduced integration 

four-node shell elements (S4R), while the two-node beam element (B31) is employed for the upper 

part of the column (h-3D). All the employed elements are available in ABAQUS /Standard library. 

The interface between S4R and B31 elements is linked using multi-point constraint (MPC). For 

computational efficiency and accuracy, the upper part of the column, height of h-3D, is divided 

into B31 elements with size of 90 mm. The bottom and middle portions of the lower part of the 

column (equal to the side width, D) are, respectively, divided into 30, and 20 S4R elements, while 

the remaining height (D) is only divided into 15 elements. Finally, each longitudinal stiffeners and 
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subpanel between the stiffeners, respectively, have 3 and 6 columns of S4R. The above-stated 

mesh sizes are found to give more efficient and reasonable results. 

 

Fig. 5.1. Tested Column Model: (a) Column; (b) FE Meshing; (c) Cross Section; and (d) Loading Program. 

 

 

A recent study by Chen et al. (2019) concluded that initial geometric and welding residual stress 

have insignificant impact on the hysteretic behavior of thin-walled steel columns under cyclic 

loading (Chen, S. et al., 2019). Also, similar findings have been reported by a number of 

researchers (Al-Kaseasbeh and Mamaghani, 2018, 2019; Banno et al., 1998; Hassan et al., 2018b; 

Ucak and Tsopelas, 2012). Accordingly, the initial imperfection and residual stress are not taken 

into account in this study.  
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5.2.1 Bidirectional Cyclic Loading Program 

As illustrated in Fig. 5.1d, among several recorded earthquake ground motions, the displacement-

controlled circular cyclic lateral loading is selected as the severest loading path (Goto et al., 2006; 

Ucak and Tsopelas, 2014; Watanabe et al., 2000). The adopted quasi-static bidirectional cyclic 

lateral loading is applied to the top of the column concurrently with a constant axial force (P). In 

each loading step, the amplitude of the cyclic displacement is increased as a multiple of the yield 

displacement (δy), which is defined by:   
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where Hy is the lateral yield load and A, I, and S, respectively, are the cross-sectional area, moment 

of inertia, and elastic section modulus of the column, and other parameters are indicated in the 

earlier context (Al-Kaseasbeh and Mamaghani, 2019).  

5.3 Numerical Model 

As illustrated in Fig. 5.2, the hysteretic behavior of the tested column, in both lateral X and Z 

directions, obtained from the FE analysis is compared to the experimental results in the literature 

(Aoki et al., 2007; Dang et al., 2017). The FE analysis results in solid line and the experimental 

results depicted with dashed line. Hy and δy, respectively, are the lateral yield load and yield 

displacement. In both X and Z directions, the FE analysis results have a reasonable agreement with 

the experimental results. The ultimate strength of the column is predicted with 1% error in X 
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direction (FEM: Hxmax/Hy = 1.167, Experiment: Hxmax/Hy = 1.160, see Fig. 5.2a) and less than 5% 

in Z direction (FEM: Hzmax/Hy = 1.123, Experiment: Hzmax/Hy = 1.174, see Fig. 5.2b). In conclusion, 

the FE model, is able to capture the structural behavior of thin-walled steel square box columns 

with a reasonable accuracy considering the local buckling under constant axial force and circular 

bidirectional cyclic lateral loading. As shown in Fig. 5.3, buckling shape of the FE analysis at the 

end of analysis (Aoki et al., 2007; Dang et al., 2017) (see Fig. 5.3b) is captured relatively well 

compared to the experimental buckling deformation (see Fig. 5.3a). In both the experiment and 

analysis, the column buckled inward and outward at the column’ base. 

 

                   

Fig. 5.2. Hysteretic Behavior of the Tested Column. 

 

  

 

(a) Experiment (Dang and 

Aoki, 2013b) 

 (b) FE Analysis 

Fig. 5.3. Buckling Deformation of Tested Column. 
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5.4 Review of Proposed Thin-Walled Steel Column with Graded Thickness 

In Chapter 3, the graded-thickness thin-walled steel square box column has been introduced and 

examined, under constant axial force and unidirectional cyclic lateral loading, to inhibit the local 

buckling near the base of the column. The proposed BGB column has the same size and volume 

of material of the uniform BB column. As shown in Fig. 5.4c, the BGB column is divided into 

three segments of constant cross sections along its height. The first two segments from the base 

have the same height, which is equal to the side width (D) of BB column. The upper segment has 

a height of h-2D, where h and D are same for both BB and BGB columns. In the proposed BGB 

column (see Fig. 5.4d), the first and second segments, respectively, have a thickness of 1.25t, and 

t, where t  is the thickness of the BB column. The thickness of the upper segment, t3, is calculated 

by equating the volume of material in both BB and BGB columns. The above configuration of the 

BGB column was chosen based on failure pattern of the tested columns in the literature (Al-

Kaseasbeh and Mamaghani, 2019; Usami, 1996). As listed in Table 5.1, the same material and 

geometrical properties (except the plate thickness) are the same for both of the BB and BGB 

columns which are  assumed to be made of the same carbon steel ASTM A242 (ASTM, 2018). 

For both BB and BGB columns, the same FEM details of the tested column, except the FE 

meshing, are used, as shown in Fig. 5.4b. For computational efficiency, the upper part of the 

column, height of h-2D, is divided into B31 elements with size of 90 mm. The bottom half of the 

lower part of the column (equal to the side width, D) is divided into 30 S4R elements, while the 

remaining height (D) is only divided into 18 elements. Finally, each longitudinal stiffeners and 

subpanel between the stiffeners, respectively, have 3 and 6 columns of S4R elements.  
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5.5 Hysteretic Behavior of BB and Proposed BGB Columns 

In order to investigate the hysteretic behavior of BB and BGB columns under a constant axial force 

and circular bidirectional cyclic lateral loading, FE analyses were conducted using the 

substantiated FEM. Under the circular bidirectional cyclic lateral loading, the applied 

displacement is equal in both lateral X and Z directions. Consequently, the BB and BGB columns 

exhibit isotropic response in both X and Z directions (e.g., see the results in Fig. 5.2a and b). 

 
Fig. 5.4. (a) BB Column, (b) FE Meshing, (c) BGB Column, and (d) Graded-thickness Sections. 

 

In this chapter, for brevity purpose, the results in the Z direction are presented in the further 

analysis. For both BB and BGB columns, the normalized lateral load vs. lateral displacement 

hysteresis loops are shown in Fig. 5.5. The plotted hysteresis loops indicate a remarkable strength 

and ductility improvement in the proposed BGB columns. As compared to their BB column 

counterparts, the post-buckling of the BGB columns is also improved. For instance, the normalized 
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ultimate strength (i.e., Hzmax/Hy = 1.56) and the corresponding normalized maximum displacement 

(i.e. δzm/δy = 2.64) of BGB1 column, respectively, are 32% and 36% greater than those of  the BB1 

column as shown in Fig. 5.5a. In the BB1 column, the buckling initiated earlier, where δzm/δy = 

1.93, than the BGB1 column. A similar behavior exists in the all analyzed BB and BGB columns, 

as shown in Fig. 5.5)b-j).  

Table 5.1. Material and Geometrical Properties of Analyzed BB and BGB Columns. 

BB Columns 

 

BGB Columns 

Column h(mm) t(mm) Rf λ P/Py Column h(mm) 
t (mm) 

Rf λ P/Py 
t1 t2 t3 

BB1 3403 9.00 0.56 0.26 0.122 

 

BGB1 3403 11.25 9.00 7.75 0.56 0.26 0.122 

BB2 3403 11.00 0.46 0.26 0.122 BGB2 3403 13.75 11.00 9.46 0.46 0.26 0.122 

BB3 3403 14.00 0.36 0.26 0.122 BGB3 3403 17.50 14.00 12.00 0.36 0.26 0.122 

BB4 3403 16.90 0.30 0.26 0.122 BGB4 3403 21.14 16.90 14.55 0.30 0.26 0.122 

BB5 3403 19.50 0.26 0.26 0.122 BGB5 3403 24.40 19.50 16.80 0.26 0.26 0.122 

BB5-10 3403 19.50 0.26 0.26 0.100 BGB5-10 3403 24.40 19.50 16.80 0.26 0.26 0.100 

BB5-15 3403 19.50 0.26 0.26 0.150 BGB5-15 3403 24.40 19.50 16.80 0.26 0.26 0.150 

BB5-20 3403 19.50 0.26 0.26 0.200 BGB5-20 3403 24.40 19.50 16.80 0.26 0.26 0.200 

BB5-30 3403 19.50 0.26 0.26 0.300 BGB5-30 3403 24.40 19.50 16.80 0.26 0.26 0.300 

BB6 3920 9.00 0.56 0.30 0.122 BGB6 3920 11.25 9.00 8.00 0.56 0.30 0.122 

BB7 3920 11.00 0.46 0.30 0.122 BGB7 3920 13.00 11.00 9.36 0.46 0.30 0.122 

BB8 3920 14.00 0.36 0.30 0.122 BGB8 3920 16.25 14.00 11.65 0.36 0.30 0.122 

BB9 3920 16.90 0.30 0.30 0.122 BGB9 3920 21.14 16.90 15.13 0.30 0.30 0.122 

BB10 3920 19.50 0.26 0.30 0.122 BGB10 3920 16.25 19.50 11.65 0.26 0.30 0.122 

BB11 6530 9.00 0.56 0.50 0.122 BGB11 6530 11.25 9.00 8.60 0.56 0.50 0.122 

BB12 6530 11.00 0.46 0.50 0.122 BGB12 6530 13.00 11.00 9.96 0.46 0.50 0.122 

BB13 6530 14.00 0.36 0.50 0.122 BGB13 6530 16.25 14.00 12.40 0.36 0.50 0.122 

BB14 6530 16.90 0.30 0.50 0.122 BGB14 6530 21.14 16.90 16.11 0.30 0.50 0.122 

BB15 6530 19.50 0.26 0.50 0.122 BGB15 6530 21.75 19.50 16.60 0.26 0.50 0.122 

For all columns: Width side (D) = 900 mm, ts / bs/ l = 6/ 80/ 225 mm. σy = 378.6 MPa, E = 206 GPa, and, ν = 0.3. 

Columns BB3 and BGB3 are loaded with one-cycle (N = 1) and three-cycle (N = 3). 

Py = σy*A, A= (D2 – Di
2), Di = D-2t, t = thickness for the B column. 

I = moment of inertia = (D4 – Di
4)/12 (Include the stiffeners), S = elastic section modulus = (D4 – Di

4)/6D. 

 

As shown in Fig. 5.6, the buckling shape of the proposed BGB1 column (see Fig. 5.6b) suffered 

less severe damage in its both flange and web compared to the conventional BB1 column (see Fig. 
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5.6a), and similar buckling is observed in all other BB and BGB columns. The previous 

comparison indicated the superior behavior in the proposed BGB column configuration over the 

uniform BB columns.  

               

                        

                

Fig. 5.5. Comparison of Hysteretic Loops in Z direction of: (a) BB1 & BGB1, (b) BB2 & BGB2, (c) BB3 & BGB3, 

(d) BB4 & BGB4, (e) BB5 & BGB5, (f) BB6 & BGB6, (g) BB7 & BGB7, (g) BB8 & BGB8, (g) BB9 & BGB9, 

and (g) BB10 & BGB10. 
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Fig. 6.5. Continued. 

 

 

Fig. 5.6. Buckling Deformation of Columns. 
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5.6 Loading Path Effect 

A comparison between unidirectional, presented in Chapter 3, and bidirectional cyclic lateral 

loading conditions is conducted to highlight the effect of the cyclic loading pattern on the hysteretic 

behavior of thin-walled steel square box columns. Fig. 5.7 shows the hysteretic behavior of the 

uniform B and BB columns and graded-thickness GB and BGB columns under unidirectional and 

circular bidirectional cyclic lateral loading. The comparison indicates that the hysteresis loops 

under circular bidirectional cyclic lateral loading is totally different from those under 

unidirectional cyclic lateral loading. At the same amplitude of applied displacement, bidirectional 

loading pattern significantly causes more degradation in the strength and ductility of the column 

with the same material and structural parameters than unidirectional loading pattern. The 

significant deterioration is due to the accelerated local buckling under circular bidirectional cyclic 

lateral loading. To make a quantitative comparison between of the hysteretic behavior of the thin-

walled steel square box columns under unidirectional and circular bidirectional loading conditions, 

the normalized loading path (i.e., Hx/Hy-Hz/Hy path for bidirectional loading) of BB and BGB 

columns are plotted as shown in Fig. 5.8. In addition, the ultimate strength of B column (Hmax/Hy 

= 1.328) and GB column (Hmax/Hy = 1.644) under one-cycle unidirectional cyclic lateral loading 

is also superimposed as a circular envelope on the Fig. 5.8 with a dashed and dash-dot lines, 

respectively. The ultimate strength difference is 13% (B vs. BB) and 6% (GB vs. BGB) between 

unidirectional and circular bidirectional cyclic lateral loading. Therefore, the hysteretic behavior 

of thin-walled steel square box columns under unidirectional loading is over-simplified and leads 

to over-estimated strength and ductility capacity. 
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5.6.1.1 Buckling Deformations 

Fig. 5.6 compares the buckling shapes of the columns at the end of the analysis. The comparison 

visually indicates that the BB column (δzm/δy = 1.93) (see Fig. 5.6a) and BGB column (δzm/δy = 

2.64) (see Fig. 5.6b), under circular bidirectional cyclic lateral loading, buckled earlier than the B 

column (δm/δy = 2.28) (see Fig. 5.6c) and GB column (δm/δy = 3) (see Fig. 5.6d) under 

unidirectional cyclic lateral loading. Furthermore, the magnitude of the local buckling seems more 

critical under circular bidirectional loading. As opposed to the unidirectional cyclic lateral loading, 

it is believed that because all the plates of the column are subjected to loading all the time of the 

analysis under circular bidirectional cyclic lateral loading.  

 

               

               

Fig. 5.7. Hysteretic Behavior of Uniform and Graded-thickness Columns. 

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

B1

(a)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

H
x
/H

y 
, 
H

z/
H

y

δx/δy , δz/δy

(BB1)x

(BB1)z

(b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8 10

H
/H

y

δ/δy

GB1

(c)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

H
x
/H

y 
, 
H

z/
H

y

δx/δy , δz/δy

(BGB1)x

(BGB1)z

(d)



www.manaraa.com

 

110 

 

                        

Fig. 5.8. Loading Paths of Columns: (a) BB1 vs. B1 Columns, and (b) BGB1 vs. BG1 Columns. 

5.6.1.2 Energy Absorption Capacity 

In order to predict the strength degradation, the dissipated energy of the column is investigated 

and presented in Fig. 5.9. The cumulative dissipated energy is calculated as the sum of the enclosed 

area under the normalized hysteretic loops in X and Z direction for circular bidirectional loading 

and in X direction for unidirectional loading. As observed in Fig. 5.9, the columns with same 

material and geometrical properties, dissipate more energy under the circular bidirectional cyclic 

lateral loading than those under unidirectional cyclic lateral loading which, in turns, results in a 

degradation in the strength and ductility of the column.  

                  

Fig. 5.9. Energy Absorption Capacity of Columns. 
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5.7 Parametric Study 

A parametric study was carried out to provide insight into the effect of key design parameters 

including: width-to-thickness ratio parameter (Rf), column slenderness ratio parameter (λ), 

magnitude of axial load (P/Py), and number of loading cycles (N), on the overall inelastic structural 

behavior of the BB and BGB columns. The practical range of these design parameters of thin-

walled steel square box bridge piers are: 0.3 ≤ Rf ≤ 0.5 , 0.2 ≤ λ ≤ 0.5 (Chen, W. F. and Duan, 

2014). For thin-walled steel stiffened square box columns, diaphragms are usually installed at an 

interval smaller than the pier width (D), α = a/D ≤ 1.0, where a is the distance between diaphragms 

(Chen, W. F. and Duan, 2014). There is no limitation in n. However, n = 4-6 is frequently used. 

As listed in Table 5.1, a total of 40 columns is analyzed using the adopted FEM in 

ABAQUS/Standard (Hibbit et al., 2014a). The studied range of these parameters are: Rf varying 

from 0.26 to 0.56, λ with a range of 0.26 - 0.5, the axial load ratio, P/Py, where five different ratios 

(i.e., P/Py = 0.1, 0.122, 0.15, 0.20, and 0.3) are applied on BB5 and BGB5 columns. To investigate 

the effect of the number of loading cycles at each displacement amplitude (N), the BB1 and BGB1 

columns were analyzed under both one (N = 1), and three (N = 3) loading cycles at each 

displacement level. 

5.7.1 Effect of Width-to-Thickness Ratio Parameter (Rf) 

The effect of the Rf parameter on the hysteretic behavior of the column was investigated. The 

increase in Rf  parameter is either due to an increase in the side width of the column or a decrease 

in its thickness. In this study, the side width of the BB and BGB columns kept constant and the 

thickness is changed. As shown in Fig. 5.10, the envelope curves of the normalized lateral load vs. 

lateral displacement relation for both BB and BGB columns with different Rf values are plotted.  
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Fig. 5.10. Effect of Rf parameter: (a) BB columns with λ = 0.26, (b) BB columns with λ = 0.3, (c) BGB columns 

with λ = 0.26, and (d) BGB columns with λ = 0.3. 
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λ = 0.26 (see Fig. 5.10a). In a similar way, as shown in Fig. 5.10c, Hzmax/Hy and δzm/δy are increased 

by 4% and 2%, respectively, as the Rf decreases from 0.56 (BGB1 column) to 0.26 (BGB5 

column). After the peak point, the post-buckling curve is less steep as Rf  gets smaller and the 

column experiences higher ductile behavior. 
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5.7.2 Effect of Slenderness Ratio Parameter (λ) 

The λ parameter effect on the hysteretic behavior of both BB and BGB columns was studied. The 

Hzmax/Hy and δzm/δy of both BB and BGB columns improve as λ gets smaller as shown in Fig. 5.11. 

For example, the Hzmax/Hy and δzm/δy, with Rf = 0.26, are increased by 10% and 36%, respectively, 

as decreases from 0.5 (BB15 column) to 0.26 (BB5 column) as shown in Fig. 5.11b. In the BGB 

columns, the Hzmax/Hy and δzm/δy are improved by 21% and 40%, respectively, as λ decreases from 

0.5 (BGB15 column) to 0.26 (BGB5 column) as shown in Fig. 5.11d. After the peak point, the 

post-buckling curve slope gets steeper, and the area enclosed by the envelope curve decreases 

when λ is higher. The same behavior exists in all other analyzed columns with different Rf values. 

5.7.3 Effect of Axial Load (P/Py) 

The hysteretic behavior of the BB5 and BGB5 columns were investigated under different axial 

load ratios (i.e., P/Py = 0.1, 0.122, 0.15, 0.2, and 0.3). As shown in Fig. 5.12, the envelope curves 

of the lateral load (Hz/Hy0) vs. lateral displacement (δz/δy0) are normalized by Hy0 (lateral yield load 

under zero axial load) and δy0 (yield displacement under zero axial load) to highlight the axial load 

effect. The Hzmax/Hy0 of both BB5 and BGB5 columns decreases as the P/Py increases. For instance, 

the Hzmax/Hy0 and δzm/δy0 are, respectively, increased by 35% and 30% when P/Py decreases from 

30% (BB5-30 column) to 10% (BB5-10 column). Similarly, the Hzmax/Hy0 and δzm/δy0 are increased 

by 15% and 14%, respectively, when P/Py decreases from 30% (BGB5-30 column) to 10% (BGB5-

10 column). Furthermore, the post-buckling curve slope becomes steeper, the dissipated energy is 

way less in the case of BB5-30 and BGB5-30 columns compared to the ones of 10% axial load.   
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Fig. 5.11. Effect of λ parameter: (a) BB columns with Rf = 0.36, (b) BB columns with Rf = 0.26 (c) BGB columns 

with Rf = 0.36, and (d) BGB columns with Rf = 0.26. 

 

 

                  

(a) BB5 Column                                                                (b) BGB5 Column 
Fig. 5.12. Effect of Axial Load on Hysteretic Behavior. 
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5.7.4 Effect of Number of Loading Cycles (N) 

As illustrated in Fig. 5.13, the envelope curves of the normalized lateral load vs. lateral 

displacement relations of both BB1 and BGB1 columns under one (N = 1) and three (N = 3) loading 

cycles at each displacement level are plotted. Under the case of N = 3, the strength deterioration 

of the BB1 (approximately, starts at δ = 1.5δy) and BGB1 (at δ = 2δy) columns starts earlier 

compared to N = 1. On contrast, no significant influence is noticed when δ is less than 1.5δy (BB1 

column), 2δy (BGB1 column) which might be due to the small plastic deformation. It is worth 

noting that the deterioration in the BGB1 column is less than in the BB1 column under both N = 1 

and N = 3 loading conditions. 

 

                  

(a) BB1 Column                                                                        (b) BGB1 Column 

Fig. 5.13. Effect of N on Hysteretic Behavior. 
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As shown in Fig. 5.14, for both BB and BGB columns, an improvement in the ultimate strength is 

observed when integrated parameters (1+P/Py) Rf  λ decrease. In this study, the failure criterion of 

thin-walled steel columns is set to occur when the displacement equals either δzm or δz0.9. The δzm 

is the displacement corresponding to Hzmax/Hy while the δz0.9 is defined as the displacement where 

the post-peak strength drops to 90% of Hzmax/Hy after the peak (Al-Kaseasbeh and Mamaghani, 

2018, 2019; Mamaghani et al., 2015; Usami, 1996). The ductility factors (i.e., δzm/δy and δz0.9/δy) 

are key parameters in the evaluation of the ductile behavior of both BB and BGB columns. As the 

strength significantly deteriorates after the peak point due to the local buckling, it is reasonable to 

use the δz0.9/δy parameter to evaluate ductility of the columns (Al-Kaseasbeh and Mamaghani, 

2018, 2019; Gao et al., 1998a; Usami, 1996; Usami et al., 2000b). The δzm/δy and δz0.9/δy of both 

BB and BGB columns are reported in Table 5.2 and plotted vs. integrated Rf, λ and/or P/Py in Fig. 

5.15. For both BB and BGB columns, the axial load effect was not  for the fitting equations of 

δzm/δy parameter as shown in Eqs. (5.7) and (5.9), while it is included in the equations of δz0.9/δy 

parameter as presented in Eqs. (5.8) and (5.10). The applicable restrictions of these formulae are 

0.26 ≤ Rf ≤ 0.56, 0.26 ≤ λ ≤ 0.5, and P/Py ≤ 0.3. It is worth mentioning that nonlinear least-squares 

regression was used for the curve fitting.  
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Table 5.2. Strength and Ductility Evaluation of BB and BGB Columns. 

BB Columns  BGB Columns 

Column Hy (KN) δy (mm) Hzmax/Hy δzm/δy δz0.9/δy 

 

Column Hy (KN) δy (mm) Hzmax/Hy δzm/δy δz0.9/δy 

BB1 1039 13.80 1.178 1.93 2.38 BGB1 1039 13.80 1.555 2.64 2.86 

BB2 1240 13.80 1.219 2.52 2.85 BGB2 1240 13.80 1.580 2.66 2.89 

BB3 1529 13.80 1.273 2.55 2.93 BGB3 1529 13.80 1.605 2.69 3.05 

BB4 1804 13.8 1.303 2.56 2.86 BGB4 1804 13.8 1.614 2.68 3.44 

BB5 2044 13.80 1.312 2.57 2.96 BGB5 2044 13.80 1.617 2.68 3.64 

BB5-10 2095 14.19 1.292 2.50 3.01 BGB5-10 2095 14.19 1.599 3.00 3.61 

BB5-15 1979 13.40 1.331 2.66 2.96 BGB5-15 1979 13.40 1.652 2.77 3.70 

BB5-20 1862 12.61 1.253 2.79 3.08 BGB5-20 1862 12.61 1.710 2.97 3.76 

BB5-30 1630 11.00 1.276 2.38 2.75 BGB5-30 1630 11.00 1.797 3.36 3.79 

BB6 906 18.37 1.177 1.93 2.33 BGB6 906 18.37 1.476 2.63 2.89 

BB7 1076 18.37 1.190 1.92 2.76 BGB7 1076 18.37 1.528 2.63 2.97 

BB8 1327 18.37 1.223 2.51 2.81 BGB8 1327 18.37 1.569 2.63 3.00 

BB9 1566 18.37 1.233 2.43 2.75 BGB9 1566 18.37 1.593 2.63 3.68 

BB10 1774 18.37 1.268 2.46 2.79 BGB10 1774 18.37 1.610 2.63 3.77 

BB11 544 50.97 1.165 1.90 2.09 BGB11 544 50.97 1.282 1.92 2.15 

BB12 646 50.97 1.165 1.88 2.01 BGB12 646 50.97 1.301 1.93 2.25 

BB13 797 50.97 1.181 1.88 2.05 BGB13 797 50.97 1.321 1.93 2.18 

BB14 940 50.97 1.191 1.89 2.07 BGB14 940 50.97 1.331 1.92 2.29 

BB15 1065 50.97 1.196 1.89 2.11 BGB15 1065 50.97 1.333 1.92 2.46 

 

The proposed formulae that fit the computed δzm/δy and δz0.9/δy values of the analyzed columns are 

as follows: 
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Fig. 5.14. Ultimate Strength of the BB and BGB Columns. 

 

 

      

Fig. 5.15. Ductility of BB and BGB Columns: (a) δzm/δy, and (b) δz0.9/δy. 
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5.9 Summary 

The main objective of this chapter is evaluating the hysteretic behavior of the uniform (BB) and 

proposed graded-thickness (BGB) thin-walled steel square box columns under a constant axial 

force and circular bidirectional cyclic lateral loading. The loading path effect is investigated to 

highlight the influence of the circular bidirectional loading over the unidirectional loading pattern. 

Finally, a comprehensive parametric study is conducted to investigate the effect of main design 

parameters (i.e., Rf, λ, P/Py, and N) on the hysteretic behavior of BB and BGB columns. The 

following conclusions are summarized:  

• The validity of adopted FEM in capturing the cyclic elastoplastic behavior of the column, 

under a constant axial force and circular bidirectional cyclic lateral loading, is verified with 

experimental results reported in the literature.   

• The proposed BGB column, with size and volume of material equivalent to the uniform 

BB column, under constant axial force and circular bidirectional cyclic lateral loading, is 

proved to have a superior overall hysteretic behavior and significant improvement 

compared to counterpart of the BB column. In overall, the ultimate strength of BGB 

column was increased at an average of 28% when λ , respectively, equals 0.26 and 0.3. In 

the case of λ = 0.5, the ultimate strength was improved by only 11% in comparison with 

BB columns. 

• For BB and BGB columns with the same material and geometrical properties, bidirectional 

cyclic lateral loading significantly leads to degradation in strength and ductility at the same 

amplitude of displacement. In addition, more damage and dissipated energy were reported 

under bidirectional loading. Therefore, the hysteretic behavior of thin-walled steel square 
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box columns under unidirectional loading is over-simplified and leads to over-estimated 

strength and ductility capacity.     

• The strength and ductility of BB and BGB column were improved by decreasing Rf and λ 

parameters. Furthermore, increasing of the P/Py and N at each displacement level causes 

more deterioration in the overall hysteretic behavior of the column after the peak point.  

• In order to predict the ultimate strength and ductility of BB and BGB columns, design 

formulae have been derived based on a conducted parametric study.  



www.manaraa.com

 

121 

 

CHAPTER 6 Summary and Future Work 

Thin-walled steel tubular columns either with circular or stiffened square box sections are 

employed diversely in a variety of structural applications for their remarkable architectural, 

structural and constructional advantages. Under earthquake motions, the thin-walled steel tubular 

columns are exposed to the risk of local buckling which leads to a significant strength and ductility 

degradation, and causes a premature full collapse. Up to date, researchers have made effort to 

investigate thin-walled steel tubular columns either with circular or square box sections with 

uniform thickness under uni/multidirectional cyclic lateral loading. All these studies indicate that 

thin-walled steel columns suffer local buckling near the base in a range that is equal to the diameter 

or side width of the circular and square box columns, respectively. In order to overcome this 

deficiency and ensure an adequate strength and ductile behavior of thin-walled steel columns, a 

graded-thickness thin-walled steel tubular column ,with size and volume of material equivalent to 

a uniform thin-walled steel tubular column, has been proposed and investigated under constant 

axial force and uni/bidirectional cyclic lateral loading.  

The main objective of this study is evaluating the inelastic structural behavior of the uniform and 

newly proposed graded-thickness thin-walled steel tubular columns under a constant axial force 

and uni/bidirectional cyclic lateral loading. The characteristics of the loading path are studied to 

highlight the influence of the bidirectional loading over the unidirectional loading pattern. Finally, 

a comprehensive parametric study is carried out to investigate the effect of key design parameters 

including: radius-to-thickness ratio parameter (Rt), the width-to-thickness ratio parameter (Rf), the 

column slenderness ratio parameter (λ), the magnitude of the axial load (P/Py), and the number of 

loading cycles (N) on overall hysteretic behavior of thin-walled steel tubular columns under 
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uni/bidirectional cyclic lateral loading. The following conclusions are summarized within the 

scope of this study:  

• The validity of adopted FEM in capturing the cyclic elastoplastic behavior of the thin-

walled steel tubular column, under a constant axial force and uni/bidirectional cyclic lateral 

loading, is verified with experimental results reported in the literature. Also, the 

satisfactory agreement between the FE analysis and experimental results confirms the 

ability of the FEM in considering the local buckling of the column under a constant axial 

force and uni/bidirectional cyclic lateral loading.   

• Newly proposed graded-thickness thin-walled steel tubular column, with size and volume 

of material equivalent to the uniform column, was introduced and evaluated under constant 

axial force and uni/bidirectional cyclic lateral loading. In general, the newly proposed 

graded-thickness columns are advantageous in achieving significant improvements in the 

hysteretic behavior compared to their counterpart of the uniform columns, emphasizing the 

effect of the plate thickness and sectional configuration in the proposed graded-thickness 

columns. The achieved improvements in the overall hysteretic behavior of the proposed 

columns is due to their ability to inhibit and/or eliminate the local buckling near the base 

of the column, where the local buckling usually occurs. 

• For both uniform and proposed graded-thickness columns with the same material and 

geometrical properties, bidirectional cyclic lateral loading significantly leads to 

degradation in strength and ductility at the same amplitude of displacement. Furthermore, 

more accumulated damage and dissipated energy were reported under bidirectional cylic 

lateral loading. Therefore, the hysteretic behavior of thin-walled steel tubular columns 
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under unidirectional cyclic lateral loading is over-simplified and tends to over-estimated 

strength and ductility capacity.     

• Based on the comprehensive study, the ultimate strength and ductility of uniform and 

proposed graded-thickness columns were improved by decreasing Rt, Rf, and λ parameters. 

Furthermore, increasing of the P/Py and N at each displacement level causes more 

deterioration in the overall hysteretic behavior of the column after the peak point.  

• In predicting the ultimate strength and ductility of uniform and proposed graded-thickness 

columns, design formulae have been derived. 

• The proposed formulae are expected to be useful for the practical design of the thin-walled 

steel tubular columns with uniform and graded thickness.  

 

The further step of this study to set up experimentation on thin-walled steel tubular columns to 

validate the analysis results and introduce the design formula to the practical code. Furthermore, 

hysteretic behavior of graded-thickness thin-walled steel tubular columns with concrete infilling 

is recommended to be investigated under constant axial force and uni/bidirectional cyclic lateral 

loading.  
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